Open Access
Issue |
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
|
|
---|---|---|
Article Number | 00162 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/bioconf/20249700162 | |
Published online | 05 April 2024 |
- M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey of machine and deep learning methods for internet of things (IoT) security,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020. [CrossRef] [Google Scholar]
- I. H. Sarker, M. H. Furhad, and R. Nowrozy, “Ai-driven cybersecurity: an overview, security intelligence modeling and research directions,” SN Comput. Sci., vol. 2, pp. 1–18, 2021. [CrossRef] [Google Scholar]
- M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and G. Fortino, “A hybrid deep learning model for efficient intrusion detection in big data environment,” Inf. Sci. (Ny)., vol. 513, pp. 386–396, 2020. [CrossRef] [Google Scholar]
- S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour, “Cyber intrusion detection by combined feature selection algorithm,” J. Inf. Secur. Appl., vol. 44, pp. 80–88, 2019. [Google Scholar]
- N. Moustafa, “A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets,” Sustain. Cities Soc., vol. 72, p. 102994, 2021. [CrossRef] [Google Scholar]
- C. Wu, A. Qian, X. Dong, and Y. Zhang, “Feature-oriented design of visual analytics system for interpretable deep learning based intrusion detection,” in 2020 International Symposium on Theoretical Aspects of Software Engineering (TASE), 2020, pp. 73–80. [CrossRef] [Google Scholar]
- S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems,” Adv. Eng. Softw., vol. 114, pp. 163–191, 2017. [CrossRef] [Google Scholar]
- J. Zhang and J.-S. Wang, “Improved salp swarm algorithm based on levy flight and sine cosine operator,” Ieee Access, vol. 8, pp. 99740–99771, 2020. [CrossRef] [Google Scholar]
- L. Abualigah, M. Shehab, M. Alshinwan, and H. Alabool, “Salp swarm algorithm: a comprehensive survey,” Neural Comput. Appl., vol. 32, pp. 11195–11215, 2020. [CrossRef] [Google Scholar]
- M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should i trust you?’ Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 1135–1144. [CrossRef] [Google Scholar]
- S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” May 2017, (accessed on 19 March 2024). [Online]. Available: http://arxiv.org/abs/1705.07874 [Google Scholar]
- D. B. Gillies, Some theorems on n-person games. Princeton University, 1953. [Google Scholar]
- A. Joseph, “Shapley regressions: A framework for statistical inference on machine learning models,” 2019. [Google Scholar]
- T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, vol. 2. Springer, 2009. [Google Scholar]
- H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine learning based IoT intrusion detection system: An MQTT case study (MQTT-IoT-IDS2020 dataset),” in International networking conference, 2020, pp. 73–84. [Google Scholar]
- H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, and X. Bellekens, “Mqtt internet of things intrusion detection dataset.” Jun, 2020. [Google Scholar]
- M. Buckland and F. Gey, “The relationship between recall and precision,” J. Am. Soc. Inf. Sci., vol. 45, no. 1, pp. 12–19, 1994. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.