Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00161
Number of page(s) 7
DOI https://doi.org/10.1051/bioconf/20249700161
Published online 05 April 2024
  • Algamal, Z.Y., Diagnostic in poisson regression models. Electronic Journal of Applied Statistical Analysis, 2012. 5(2): p. 178–186. [Google Scholar]
  • Cameron, A.C. and P.K. Trivedi, Regression analysis of count data. Vol. 53. 2013: Cambridge university press. [CrossRef] [Google Scholar]
  • De Jong, P. and G.Z. Heller, Generalized linear models for insurance data. Vol. 10. 2008: Cambridge University Press Cambridge. [CrossRef] [Google Scholar]
  • Algamal, Z.Y. and M.H. Lee, Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification. Expert Systems with Applications, 2015. 42(23): p. 9326–9332. [CrossRef] [Google Scholar]
  • Sayed, G.I., A.E. Hassanien, and A.T. Azar, Feature selection via a novel chaotic crow search algorithm. Neural Computing and Applications, 2017. [Google Scholar]
  • Sindhu, R., et al., Sine-cosine algorithm for feature selection with elitism strategy and new updating mechanism. Neural Computing and Applications, 2017. 28(10): p. 2947–2958. [CrossRef] [Google Scholar]
  • Broadhurst, D., et al., Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Acta, 1997. 348(1-3): p. 71–86. [CrossRef] [Google Scholar]
  • Drezner, Z., G.A. Marcoulides, and S. Salhi, Tabu search model selection in multiple regression analysis. Communications in Statistics - Simulation and Computation, 1999. 28(2): p. 349–367. [CrossRef] [Google Scholar]
  • Örkcü, H., Subset selection in multiple linear regression models: A hybrid of genetic and simulated annealing algorithms. Applied Mathematics and Computation, 2013. 219(23): p. 11018–11028. [CrossRef] [Google Scholar]
  • Brusco, M.J., A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis. Computational Statistics & Data Analysis, 2014. 77: p. 38–53. [CrossRef] [Google Scholar]
  • Dünder, E., et al., Variable selection in linear regression analysis with alternative Bayesian information criteria using differential evaluation algorithm. Communications in Statistics - Simulation and Computation, 2017. 47(2): p. 605–614. [Google Scholar]
  • Pacheco, J., S. Casado, and L. Núñez, A variable selection method based on Tabu search for logistic regression models. European Journal of Operational Research, 2009. 199(2): p. 506–511. [CrossRef] [Google Scholar]
  • Unler, A. and A. Murat, A discrete particle swarm optimization method for feature selection in binary classification problems. European Journal of Operational Research, 2010. 206(3): p. 528–539. [CrossRef] [Google Scholar]
  • Koç, H., et al., Particle swarm optimization-based variable selection in Poisson regression analysis via information complexity-type criteria. Communications in Statistics - Theory and Methods, 2017: p. 1–9. [Google Scholar]
  • Massaro, T.J. and H. Bozdogan, Variable subset selection via GA and information complexity in mixtures of Poisson and negative binomial regression models. arXiv preprint 1505.05229, 2015. [Google Scholar]
  • Dunder, E., S. Gumustekin, and M.A. Cengiz, Variable selection in gamma regression models via artificial bee colony algorithm. Journal of Applied Statistics, 2016. 45(1): p. 8–16. [Google Scholar]
  • Algamal, Z.Y. and M.H. Lee, Adjusted Adaptive LASSO in High-dimensional Poisson Regression Model. Modern Applied Science, 2015. 9(4): p. 170–177. [CrossRef] [Google Scholar]
  • KaÇiranlar, S. and I. Dawoud, On the performance of the Poisson and the negative binomial ridge predictors. Communications in Statistics - Simulation and Computation, 2017: p. 0-0. [Google Scholar]
  • Yang, X.-S., Multiobjective firefly algorithm for continuous optimization. Engineering with Computers, 2013. 29(2): p. 175–184. [CrossRef] [Google Scholar]
  • Yu, S., et al., Enhancing firefly algorithm using generalized opposition-based learning. Computing, 2015. 97(7): p. 741–754. [CrossRef] [Google Scholar]
  • Zhang, J., et al., Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm. BMC Bioinformatics, 2016. 17(1): p. 323. [CrossRef] [PubMed] [Google Scholar]
  • Sayed, G.I., A. Darwish, and A.E. Hassanien, A New Chaotic Whale Optimization Algorithm for Features Selection. Journal of Classification, 2018. 35(2): p. 300–344. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.