Open Access
Issue
BIO Web Conf.
Volume 97, 2024
Fifth International Scientific Conference of Alkafeel University (ISCKU 2024)
Article Number 00160
Number of page(s) 7
DOI https://doi.org/10.1051/bioconf/20249700160
Published online 05 April 2024
  • Kilbas A.A., Srivastara H.M. and Trujillo J.J., “Theory and applications of Fractional Differential Equations”, ELSEVIER (2006). [Google Scholar]
  • Moragdo M.L., Ford N.J. and Lima P.M., “Analysis and numerical methods for fractional differential equations with delay”, Journal of computational and applied mathematics 252, 159–168 (2013). [CrossRef] [Google Scholar]
  • D.J. Evans and K.R. Raslan, “The Adomian Decomposition Method For solving Delay Differential Equations”, International Journal of Computer Mathematics, pp:1–6, (2004). [Google Scholar]
  • Daftardar-Gejji V., Sukale Y., Bhalekar S., Solving fractional delay differential equations: a new approach. Fract Calc Appl Anal 18(2):400–418 (2015). [CrossRef] [Google Scholar]
  • El-Safty, A., Salim, M. S. and El-Khatib, M. A., Convergent of the spline functions for delay dynamic system. Int. J. Comput. Math., 80(4), 509–518. (2003). [CrossRef] [Google Scholar]
  • Shadia, M., Numerical solution of delay differential and neutral differential equations using spline methods. Ph. D Thesis, Assuit University, (1992). [Google Scholar]
  • Ebimene, J. Mamadu, Ignatius N. Njoseh, Solving delay differential equationns by Elzaki transform method, Boson J. Modern Phys., (BJMP) 3–1 (2017). [Google Scholar]
  • S.T. Demiray, H. Bulut and F.B.M. Belgacem, Sumudu transform method for analytical solutions of fractional type ordinary differential equations, J.Math. Prob. Eng., (2015). [Google Scholar]
  • Mahmoud, M. El-Borai, On the initial value problem for partial differential equations with operator coefficients, Int. J, of Math. And Mathematical Sciences, 3, pp. 103–111, (1980). [CrossRef] [Google Scholar]
  • A.H. Ali and A. S. J. Al-Saif, Adomian decomposition method for solving some models of nonlinear Partial Differential Equations, Basrah Journal of Scienec (A) vol. 26, 1–11, (2008). [Google Scholar]
  • D.B. Dhaigude; Gunvant, A. Birajdar and V.R. Nikam, Adomian decomposition method for fractional Benjamin-Bona-Mahony-Burger's equation, Int. of appl. math, and mech 8 (12): 42–51, (2012). [Google Scholar]
  • Cai, M. and Li, C., Numerical Approaches to Fractional Integrals and Derivatives:A Review. Mathematics, 8, 43, (2020). [CrossRef] [Google Scholar]
  • Agom, E.U., Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations. International Journal of Engineering Science Invention, 4, 60–65, (2022). [Google Scholar]
  • Li, W. and Pang, Y. Application of Adomian Decomposition Method to Nonlinear Systems. Advances in Difference Equations, Article No. 67, (2020). [Google Scholar]
  • Tarasov, V.E., General Fractional Calculus: Multi-Kernel Approach. Mathematics, 9, 1501, (2021). [CrossRef] [Google Scholar]
  • Podlubny I., “Fractional differential equations”, Academic Press, San Diego, (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.