Issue |
BIO Web Conf.
Volume 144, 2024
1st International Graduate Conference on Smart Agriculture and Green Renewable Energy (SAGE-Grace 2024)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 10 | |
Section | Smart Agriculture and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/202414401002 | |
Published online | 25 November 2024 |
Classification of Leaf Diseases in Oil Palm Plants with Haar Wavelet Transform Features Based on Machine Learning
1 Department of Electrical Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, 55183 Yogyakarta, Indonesia
2 Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, 02600 Perlis, Malaysia
* Corresponding author: yjusman@umy.ac.id
Oil palm plants are essential as they produce palm fruit that can be processed into edible oil—an essential human need. However, these plants are often infected with diseases, negatively impacting crop productivity and the quality of the oil produced. These diseases are caused by mushrooms, bacteria, viruses, and pests that can spread rapidly and damage the leaves. Therefore, early detection of oil palm leaf disease plays a crucial role in reducing the negative impact on crops and significant economic losses. This study aims to design a system to classify the types of leaf diseases of oil palm plants using texture feature extraction (Haar Wavelet Algorithm) and machine learning-based classification algorithms (Cubic SVM, Medium Gaussian SVM, Quadratic SVM, Cosine KNN, Fine KNN, and Weighted KNN). Cubic SVM yielded the highest training result with an averages accuracy of 81.54% and an average time of 48.135 seconds. However, Medium Gaussian SVM outperformed other models during testing, producing an accuracy of 87%, precision of 81%, recall of 81 %, specificity of 90%, and F-score of 81%.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.