Open Access
Issue
BIO Web Conf.
Volume 144, 2024
1st International Graduate Conference on Smart Agriculture and Green Renewable Energy (SAGE-Grace 2024)
Article Number 01002
Number of page(s) 10
Section Smart Agriculture and Precision Farming
DOI https://doi.org/10.1051/bioconf/202414401002
Published online 25 November 2024
  • Statista, “Production volume of palm oil in Indonesia from 2014 to 2023.” [Online]. Available: https://www.statista.com/statistics/706786/production-of-palm-oil-in- indonesia/ [Google Scholar]
  • “Foreign Agricultural Service Global Market Analysis International Production Assessment Division Indonesia Palm Oil: Historical Revisions Using Satellite-Derived Methodology,” 2023. [Google Scholar]
  • M. Russell, “Palm oil: Economic and environmental impacts.” [Online]. Available: http://www.europarl.europa.eu/thinktank [Google Scholar]
  • V. Singh and A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information Processing in Agriculture, vol. 4, no. 1, pp. 41–49, Mar. 2017, doi: 10.1016/j.inpa.2016.10.005. [CrossRef] [Google Scholar]
  • I. Ahmad, Y. Rahmanto, R. I. Borman, F. Rossi, Y. Jusman, and A. D. Alexander, “Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map (SOM) Model,” in 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022, pp. 12–17. doi: 10.1109/ICE3IS56585.2022.10010110. [Google Scholar]
  • U. Hairah, A. Septiarini, N. Puspitasari, E. Romiyanto, N. A. Hadiwijaya, and D. Nurcahyono, “Analysis of EfficientNet Architecture Performance for Classifying the Tea Leaves Diseases,” in Proceedings of the 9th International Conference on Computer and Communication Engineering, ICCCE 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 223–228. doi: 10.1109/ICCCE58854.2023.10246097. [Google Scholar]
  • Z. Iqbal, M. A. Khan, M. Sharif, J. H. Shah, M. H. ur Rehman, and K. Javed, “An automated detection and classification of citrus plant diseases using image processing techniques: A review,” Computers and Electronics in Agriculture, vol. 153. Elsevier B.V., pp. 12–32, Oct. 01, 2018. doi: 10.1016/j.compag.2018.07.032. [CrossRef] [Google Scholar]
  • G. Dhingra, V. Kumar, and H. D. Joshi, “A novel computer vision based neutrosophic approach for leaf disease identification and classification,” Measurement (Lond), vol. 135, pp. 782–794, Mar. 2019, doi: 10.1016/j.measurement.2018.12.027. [CrossRef] [Google Scholar]
  • S. Bharathi and P. Harini, “Early Detection of Diseases in Coconut Tree Leaves,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 1265–1268. doi: 10.1109/ICACCS48705.2020.9074357. [Google Scholar]
  • E. P. Atika, A. Sunyoto, and E. T. Luthfi, “Genetic Algorithm and K-Nearest Neighbors for Oil Palm Leaf Disease Classification,” in ICOIACT 2022 - 5th International Conference on Information and Communications Technology: A New Way to Make AI Useful for Everyone in the New Normal Era, Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 447–451. doi: 10.1109/ICOIACT55506.2022.9971854. [Google Scholar]
  • A. Septiarini, H. Hamdani, T. Hardianti, E. Winarno, S. Suyanto, and E. Irwansyah, “Pixel quantification and color feature extraction on leaf images for oil palm disease identification,” in 7th International Conference on Electrical, Electronics and Information Engineering: Technological Breakthrough for Greater New Life, ICEEIE 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/ICEEIE52663.2021.9616645. [Google Scholar]
  • A. Nor, I. Masazhar, M. Kamal, S. Alam, and S. Malaysia, “Measurement and Applications (ICSIMA) 28,” 2017. [Google Scholar]
  • A. F. Aji et al., “Detection of Palm Oil Leaf Disease with Image Processing and Neural Network Classification on Mobile Device,” International Journal of Computer Theory and Engineering, pp. 528–532, 2013, doi: 10.7763/ijcte.2013.v5.743. [Google Scholar]
  • H. Hamdani, A. Septiarini, A. Sunyoto, S. Suyanto, and F. Utaminingrum, “Detection of oil palm leaf disease based on color histogram and supervised classifier,” Optik (Stuttg), vol. 245, Nov. 2021, doi: 10.1016/j.ijleo.2021.167753. [Google Scholar]
  • J. H. Ong, P. Ong, and W. K. Lee, “Image-based Oil Palm Leaf Disease Detection using Convolutional Neural Network,” Journal of Information and Communication Technology, vol. 21, no. 3, pp. 383–410, Jul. 2022, doi: 10.32890/jict2022.21.4. [CrossRef] [Google Scholar]
  • A. Septiarini, H. Hamdani, E. Junirianto, M. S. S. Thayf, G. Triyono, and Henderi, “Oil Palm Leaf Disease Detection on Natural Background Using Convolutional Neural Networks,” in Proceeding - IEEE International Conference on Communication, Networks and Satellite, COMNETSAT 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 388–392. doi: 10.1109/COMNETSAT56033.2022.9994555. [Google Scholar]
  • S. Firdaus, M. Nasution, and F. Fahmi, “Initial Design For Utilizing Machine Learning In Identifying Diseases In Palm Oil Plant,” in Proceeding - ELTICOM 2023: 7th International Conference on Electrical, Telecommunication and Computer Engineering: Sustainable and Resilient Communities with Smart Technologies, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 95–99. doi: 10.1109/ELTICOM61905.2023.10443120. [Google Scholar]
  • “Date Palm data,” Kaggle. [Online]. Available: https://www.kaggle.com/datasets/hadjerhamaidi/date-palm-data [Google Scholar]
  • A. S. Lewis and G. Knowles, “Image Compression Using the 2-D Wavelet Transform,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp. 244–250, 1992, doi: 10.1109/83.136601. [CrossRef] [Google Scholar]
  • M. Bhagat and D. Kumar, “Performance evaluation of PCA based reduced features of leaf images extracted by DWT using random Forest and XGBoost classifier,” Multimed Tools Appl, vol. 82, no. 17, pp. 26225–26254, Jul. 2023, doi: 10.1007/s11042-023-14370-9. [CrossRef] [Google Scholar]
  • Y. Jusman, J. H. Lubis, A. N. N. Chamim, and S. N. A. M. Kanafiah, “Feature Extraction Performance to Differentiate Spinal Curvature Types using Gray Level Co- occurrence Matrix Algorithm,” in 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 337–341. doi: 10.1109/ICOIACT50329.2020.9332067. [Google Scholar]
  • I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with different kernels,” International Journal of Electrical and Computer Engineering, vol. 10, no. 5, pp. 5497–5506, 2020, doi: 10.11591/IJECE.V10I5.PP5497-5506. [Google Scholar]
  • Y. Jusman, J. H. Lubis, S. N. A. M. Kanafiah, and M. I. Yusof, “Comparison of spine curvature images classification using support vector machine and K-nearest neighbors,” AIP Conf Proc, vol. 2499, no. 1, p. 080001, Nov. 2022, doi: 10.1063/5.0105008 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.