Open Access
BIO Web of Conferences
Volume 7, 2016
39th World Congress of Vine and Wine
Article Number 01025
Number of page(s) 7
Section Viticulture
Published online 26 October 2016
  • C. Acevedo-Opazo, B. Tisseyre, S. Guillaume y H. Ojeda. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precis.Agric. 9: 285–302 (2008) [Google Scholar]
  • J. Bellvert, P. Zarco, E. Fereres y J. Girona. Mapping crop water stress index in a “Pinot noir” vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture Journal, 15, 4: 361–376 (2014) [Google Scholar]
  • J.A. Berni, P.J. Zarco, L. Suárez, y E. Fereres. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. On Geosc. And Rem. Sens, 47, 3: 722–738 (2009) [Google Scholar]
  • R. Bramley, y R. Hamilton. 2004. Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10: 32–45 [Google Scholar]
  • R. Bramley, y R. Hamilton. Terroir and precision viticulture: Are they compatible? Journal International des sciences de la vigne et du vin, 41: 1–8 (2007) [Google Scholar]
  • S. Cook and R. Bramley. Precision agriculture - opportunities, benefits and pitfalls of site-specific crop management in Australia. Aust. J. Exp. Agric. 38: 753–763 (1998) [Google Scholar]
  • J.P. Da Costa, Ch. German, O. Lavialle, S. Homayouni y, G. Grenier. Vine field monitoring using resolution remote sensing images: segmentation and characterization of rows of vines. VIth Int. Terroir Congr. Montpellier (2006) [Google Scholar]
  • V.D. Gómez-Miguel, Terroir. In: J. Böhm (ed.) Atlas das castas da península Ibérica: história, terroir, ampelografia. pp. 104–153. Dinalivro, Lisboa, Portugal (2011) [Google Scholar]
  • V.D. Gómez-Miguel y, V. Sotés. Delimitación de zonas vitícolas de la bv DO Ca Rioja. Universidad Politécnica de Madrid, Madrid (1997) [Google Scholar]
  • V.D. Gómez-Miguel. Geología, Geomorfología y Edafología. Atlas Nacional de España. Instituto Geográfico Nacional. Madrid (2005) [Google Scholar]
  • V.D. Gómez-Miguel, M.L. González-SanJosé y, V. Sotés. High resolution remote sensing a supplement to mMicro-zoning studies. IXe Congrès International des Terroirs vitivinicoles, Francia (2012) [Google Scholar]
  • A. Hall, D. Lamb, B. Holzapfel y, J. Louis. Optical remote sensing applications in viticulture - a review. Aust.J.Grape Wine Res. 8:36–47 (2002) [Google Scholar]
  • A. Hall, D.W. Lamb, B.P. Holzapfel y, J.P. Louis. Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precis.Agric. 12:103–117 (2011) [Google Scholar]
  • A. Hall, J. Louis y, D. Lamb. Characterizing and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Comput. Geosci. 29:813–822 (2003) [Google Scholar]
  • J.R. Jensen, Introductory digital image processing: a remote sensing perspective. Prentice Hall. New Jersey 526 pp. (2004) [Google Scholar]
  • L. Johnson, D. Roczen, S. Youkhana, R. Nemani y, D. Bosch. Mapping vineyard leaf area with multispectral satellite imagery. Comput.Electron.Agric. 38:33–44 (2003) [Google Scholar]
  • MAPA. Métodos oficiales de análisis de suelos y plantas. Ministerio de Agricultura, Pesca y Alimentación. Madrid (1986) [Google Scholar]
  • A.J. Mathews y, JR. Jensen. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing, 5, 5: 2164–2183 (2013) [Google Scholar]
  • A. Martínez, J. Cámara y, V.D. Gómez-Miguel. Vegetation indices variability in vineyards of Rioja Alta (DO Ca Rioja) in different dates. X Int Cong Terroir Tokai (Hungría) (2014) [Google Scholar]
  • A. Martínez, y V.D. Gómez-Miguel. Vegetaction index cartography as a methodology complement to the terroir zoning for its use in precisión viticulture (i.p.) [Google Scholar]
  • M.V. Möller, Alchannatis, Y. Cohen, M. Meron, J. Tsipris, A. Nahor, V. Ostrovsky, M. Sprintsin, y S. Cohen. Use of termal and visible imagery for estimating crop water status of irrigated grapevine. Jor. of Experim. Botany, 58:827–838 (2007) [Google Scholar]
  • OIV. 2015. Preliminary Draft Resolution. VITI-TECVIT 14-xxx Et1. Version 01/2014 (a proposed by Bramley et al. 2005) [Google Scholar]
  • OIV (Mod). The OIV guidelines for sampling in vineyards. CI-TECVIT 2014-03 04.WD23 (propuesta) (2015) [Google Scholar]
  • H. Ojeda. Precision irrigation of the vineyard. CONCLIVIT. Zaragoza. España (2007) [Google Scholar]
  • A. Palacios-Orueta, JE Pinzón, SL Ustin, y D.A. Roberts. Remote sensing of soils in the Santa Mónica Mountains. Rem Sensing of Environment, 68: 138–151 (1999) [Google Scholar]
  • A.G. Reynolds, IV Senchuk, C. Reest, y Ch. Savigny. Use of GPS and GIS for elucidation of the basis for terroir: spatial variation in an Ontario Riesling vineyard. Am. J. Enol. Vitic., 58,2:145–163 (2007) [Google Scholar]
  • J.A. Taylor. Digital terroir and precision viticulture. PHD Thesis. MMIV. New South Wales Australia 255p. (2004) [Google Scholar]
  • USDA. Kellogg Soil Survey Laboratory Methods Manual. USDA. Version 5.0 (2014) [Google Scholar]
  • USDA. Soil Survey Field and Laboratory Methos Manual, USDA. Version 2 (2014) [Google Scholar]
  • USDA. Precision Agriculture: NRCS support for emerging technologies. Agronomy Technical Note No. 1 (June 2007) [Google Scholar]
  • E. Vaudour. Les terroir viticoles. Editions La Vigne-DUNOD, Paris 294 pp. (2003) [Google Scholar]
  • P A. Zarco, Berjón, R. López-Lozano, J. Miller, P. Martín, V. Cachorro, González M.y A. de Frutos, Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ., 99, 3: 271–287 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.