Open Access
BIO Web of Conferences
Volume 7, 2016
39th World Congress of Vine and Wine
Article Number 04009
Number of page(s) 8
Section Safety and Health
Published online 26 October 2016
  • Ali, S. H., Madhana, R. M., K, V. A., Kasala, E. R., Bodduluru, L. N., Pitta, S., Lahkar, M. (2015). Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids, 101, 37–42. doi: 10.1016/j.steroids.2015.05.010 [Google Scholar]
  • Álvarez-Suárez, P., Banqueri, M., Vilella, M., Méndez, M., & Arias, J. L. (2015). The effect of recording interval length on behavioral assessment using the forced swimming test. Revista Iberoamericana de Psicología y Salud, 6(2), 90–95. doi: 10.1016/j.rips.2015.04.004 [Google Scholar]
  • Aravindan, S., Ramraj, S. K., Somasundaram, S. T., Herman, T. S., & Aravindan, N. (2015). Polyphenols from marine brown algae target radiotherapy-coordinated EMT and stemness-maintenance in residual pancreatic cancer. Stem Cell Res Ther, 6(1), 182. doi: 10.1186/s13287-015-0173-3 [CrossRef] [PubMed] [Google Scholar]
  • Buttenschon, H. N., Foldager, L., Elfving, B., Poulsen, P. H., Uher, R., & Mors, O. (2015). Neurotrophic factors in depression in response to treatment. J Affect Disord, 183, 287–294. doi: 10.1016/j.jad.2015.05.027 [CrossRef] [PubMed] [Google Scholar]
  • Cai, S., Huang, S., & Hao, W. (2015). New hypothesis and treatment targets of depression: an integrated view of key findings. Neurosci Bull, 31(1), 61–74. doi: 10.1007/s12264-014-1486-4 [CrossRef] [PubMed] [Google Scholar]
  • Chiba, S., Numakawa, T., Ninomiya, M., Richards, M. C., Wakabayashi, C., & Kunugi, H. (2012). Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry, 39(1), 112–119. doi: 10.1016/j.pnpbp.2012.05.018 [CrossRef] [PubMed] [Google Scholar]
  • Chong, S. A., Vaingankar, J., Abdin, E., & Subramaniam, M. (2012). The prevalence and impact of major depressive disorder among Chinese, Malays and Indians in an Asian multi-racial population. J Affect Disord, 138(1-2), 128–136. doi: 10.1016/j.jad.2011.11.038 [CrossRef] [PubMed] [Google Scholar]
  • Deschenes, S. S., Burns, R. J., & Schmitz, N. (2015). Associations between diabetes, major depressive disorder and generalized anxiety disorder comorbidity, and disability: findings from the 2012 Canadian Community Health Survey–Mental Health (CCHS-MH). J Psychosom Res, 78(2), 137–142. doi: 10.1016/j.jpsychores.2014.11.023 [CrossRef] [PubMed] [Google Scholar]
  • Duman, R. S., & Voleti, B. (2012). Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci, 35(1), 47–56. doi: 10.1016/j.tins.2011.11.004 [CrossRef] [PubMed] [Google Scholar]
  • Edmands, W. M., Ferrari, P., Rothwell, J. A., Rinaldi, S., Slimani, N., Barupal, D. K., Scalbert, A. (2015). Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr, 102(4), 905–913. doi: 10.3945/ajcn.114.101881 [CrossRef] [PubMed] [Google Scholar]
  • Fenton, E. Y., Fournier, N. M., Lussier, A. L., Romay-Tallon, R., Caruncho, H. J., & Kalynchuk, L. E. (2015). Imipramine protects against the deleterious effects of chronic corticosterone on depression-like behavior, hippocampal reelin expression, and neuronal maturation. Prog Neuropsychopharmacol Biol Psychiatry, 60, 52–59. doi: 10.1016/j.pnpbp.2015.02.001 [CrossRef] [PubMed] [Google Scholar]
  • Gelaye, B., Williams, M. A., Lemma, S., Berhane, Y., Fann, J. R., Stoep, A. V., & Zhou, X. H. (2015). Major depressive disorder and cardiometabolic disease risk among sub-Saharan African adults. Diabetes Metab Syndr, 9(3), 183-191. doi: 10.1016/j.dsx.2014.05.003 [CrossRef] [PubMed] [Google Scholar]
  • Gupta, D., Radhakrishnan, M., & Kurhe, Y. (2015). Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids, 96, 95–102. doi: 10.1016/j.steroids.2015.01.021 [CrossRef] [PubMed] [Google Scholar]
  • Jiang, P., Sun, Y., Zhu, T., Zhan, C., Gu, W., Yuan, T., & Yu, H. (2012). Endogenous neurogenesis in the hippocampus of developing rat after intrauterine infection. Brain Res, 1459, 1–14. doi: 10.1016/j.brainres.2012.03.058 [CrossRef] [PubMed] [Google Scholar]
  • Jones, S. G., & Benca, R. M. (2015). Circadian Disruption in Psychiatric Disorders. Sleep Medicine Clinics, 10(4), 481–493. doi: [CrossRef] [PubMed] [Google Scholar]
  • Ko, Y. S., Lee, W. S., Joo, Y. N., Choi, Y. H., Kim, G. S., Jung, J. M., Kim, H. J. (2015). Polyphenol mixtures of Euphorbia supina the inhibit invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells. Oncol Rep. doi: 10.3892/or.2015.4304 [Google Scholar]
  • Kruk-Slomka, M., Michalak, A., & Biala, G. (2015). Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system. Behav Brain Res, 284, 24–36. doi: 10.1016/j.bbr.2015.01.051 [CrossRef] [PubMed] [Google Scholar]
  • Kuepper, Y. (2015). Hypothalamic-Pituitary-Adrenal Axis, Psychobiology of. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (pp. 476–481). Oxford: Elsevier [CrossRef] [Google Scholar]
  • Le Dantec, Y., Hache, G., Guilloux, J. P., Guiard, B. P., David, D. J., Adrien, J., & Escourrou, P. (2014). NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration. Neuroscience, 274, 357–368. doi: [CrossRef] [PubMed] [Google Scholar]
  • Lee, B., Sur, B., Shim, I., Lee, H., & Hahm, D. H. (2015). Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection. BMC Complement Altern Med, 15, 210. doi: 10.1186/s12906-015-0746-9 [CrossRef] [PubMed] [Google Scholar]
  • Llansola, M., Ahabrach, H., Errami, M., Cabrera-Pastor, A., Addaoudi, K., & Felipo, V. (2013). Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats. Arch Biochem Biophys, 536(2), 164–170. doi: 10.1016/ [CrossRef] [PubMed] [Google Scholar]
  • Lucassen, P. J., Pruessner, J., Sousa, N., Almeida, O. F., Van Dam, A. M., Rajkowska, G., Czeh, B. (2014). Neuropathology of stress. Acta Neuropathol, 127(1), 109-135. doi: 10.1007/s00401-013-1223-5 [CrossRef] [PubMed] [Google Scholar]
  • Luo, L., Liu, X. L., Mu, R. H., Wu, Y. J., Liu, B. B., Geng, D., Yi, L. T. (2015). Hippocampal BDNF signaling restored with chronic asiaticoside treatment in depression-like mice. Brain Res Bull, 114, 62–69. doi: 10.1016/j.brainresbull.2015.03.006 [CrossRef] [PubMed] [Google Scholar]
  • Mao, Q. Q., Huang, Z., Zhong, X. M., Xian, Y. F., & Ip, S. P. (2014). Piperine reverses the effects of corticosterone on behavior and hippocampal BDNF expression in mice. Neurochem Int, 74, 36-41. doi: 10.1016/j.neuint.2014.04.017 [CrossRef] [PubMed] [Google Scholar]
  • Mao, X. Y., Cao, Y. G., Ji, Z., Zhou, H. H., Liu, Z. Q., & Sun, H. L. (2015). Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog Neuropsychopharmacol Biol Psychiatry, 60, 11–17. doi: 10.1016/j.pnpbp.2015.01.015 [CrossRef] [PubMed] [Google Scholar]
  • Matrisciano, F., Bonaccorso, S., Ricciardi, A., Scaccianoce, S., Panaccione, I., Wang, L., Shelton, R. C. (2009). Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. J Psychiatr Res, 43(3), 247–254. doi: 10.1016/j.jpsychires.2008.03.014 [CrossRef] [PubMed] [Google Scholar]
  • Menard, C., Hodes, G. E., & Russo, S. J. (2015). Pathogenesis of depression: Insights from human and rodent studies. Neuroscience. doi: 10.1016/j.neuroscience.2015.05.053 [Google Scholar]
  • Mendez-David, I., Tritschler, L., Ali, Z. E., Damiens, M. H., Pallardy, M., David, D. J., Gardier, A. M. (2015). Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett, 597, 121–126. doi: 10.1016/j.neulet.2015.04.036 [CrossRef] [PubMed] [Google Scholar]
  • Mulero, J., Martinez, G., Oliva, J., Cermeno, S., Cayuela, J. M., Zafrilla, P., Barba, A. (2015). Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem, 180, 25–31. doi: 10.1016/j.foodchem.2015.01.141 [Google Scholar]
  • Patki, G., Ali, Q., Pokkunuri, I., Asghar, M., & Salim, S. (2015). Grape powder treatment prevents anxiety-like behavior in a rat model of aging. Nutr Res, 35(6), 504–511. doi: 10.1016/j.nutres.2015.05.005 [CrossRef] [PubMed] [Google Scholar]
  • Réus, G. Z., Abaleira, H. M., Titus, S. E., Arent, C. O., Michels, M., da Luz, J. R., Quevedo, J. (2015). Effects of ketamine administration on the phosphorylation levels of CREB and TrKB and on oxidative damage after infusion of MEK inhibitor. Pharmacological Reports. doi: 10.1016/j.pharep.2015.08.010 [Google Scholar]
  • Reinhart, V., Bove, S. E., Volfson, D., Lewis, D. A., Kleiman, R. J., & Lanz, T. A. (2015). Evaluation of TrkB and BDNF transcripts in prefrontal cortex, hippocampus, and striatum from subjects with schizophrenia, bipolar disorder, and major depressive disorder. Neurobiol Dis, 77, 220–227. doi: 10.1016/j.nbd.2015.03.011 [CrossRef] [PubMed] [Google Scholar]
  • Sahin, T. D., Karson, A., Balci, F., Yazir, Y., Bayramgurler, D., & Utkan, T. (2015). TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res, 292, 233–240. doi: 10.1016/j.bbr.2015.05.062 [CrossRef] [PubMed] [Google Scholar]
  • Solanki, N., Alkadhi, I., Atrooz, F., Patki, G., & Salim, S. (2015). Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutr Res, 35(1), 65–75. doi: 10.1016/j.nutres.2014.11.008 [CrossRef] [PubMed] [Google Scholar]
  • Sousa, C. N., Meneses, L. N., Vasconcelos, G. S., Silva, M. C., Silva, J. C., Macedo, D., Vasconcelos, S. M. (2015). Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression. Psychiatry Res. doi: 10.1016/j.psychres.2015.08.042 [Google Scholar]
  • Sun, B., Neves, A. C., Fernandes, T. A., Fernandes, A. L., Mateus, N., De Freitas, V., Spranger, M. I. (2011). Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. J Agric Food Chem, 59(12), 6550–6557. doi: 10.1021/jf201383e [CrossRef] [PubMed] [Google Scholar]
  • Sun, B., Spranger, I., Yang, J., Leandro, C., Guo, L., Canario, S., Wu, C. (2009). Red wine phenolic complexes and their in vitro antioxidant activity. J Agric Food Chem, 57(18), 8623-8627. doi: 10.1021/jf901610h [CrossRef] [PubMed] [Google Scholar]
  • Urquiaga, I., D'Acuna, S., Perez, D., Dicenta, S., Echeverria, G., Rigotti, A., & Leighton, F. (2015). Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: a randomized controlled trial. Biol Res, 48, 49. doi: 10.1186/s40659-015-0040-9 [CrossRef] [PubMed] [Google Scholar]
  • Wieczorek, L., Fish, E. W., O'Leary-Moore, S. K., Parnell, S. E., & Sulik, K. K. (2015). Hypothalamic-pituitary-adrenal axis and behavioral dysfunction following early binge-like prenatal alcohol exposure in mice. Alcohol, 49(3), 207–217. doi: 10.1016/j.alcohol.2015.01.005 [CrossRef] [PubMed] [Google Scholar]
  • Wu, T. C., Chen, H. T., Chang, H. Y., Yang, C. Y., Hsiao, M. C., Cheng, M. L., & Chen, J. C. (2013). Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior. Psychoneuroendocrinology, 38(6), 871–883. doi: 10.1016/j.psyneuen.2012.09.011 [CrossRef] [PubMed] [Google Scholar]
  • Yu, P., Zhang, H., Li, X., He, F., & Tai, F. (2015). Early bi-parental separation or neonatal paternal deprivation in mandarin voles reduces adult offspring paternal behavior and alters serum corticosterone levels and neurochemistry. Horm Behav, 73, 8–14. doi: 10.1016/j.yhbeh.2015.05.006 [CrossRef] [PubMed] [Google Scholar]
  • Zhang, H., Zhao, Y., & Wang, Z. (2015). Chronic corticosterone exposure reduces hippocampal astrocyte structural plasticity and induces hippocampal atrophy in mice. Neurosci Lett, 592, 76–81. doi: 10.1016/j.neulet.2015.03.006 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.