Open Access
Issue
BIO Web Conf.
Volume 17, 2020
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019)
Article Number 00234
Number of page(s) 6
DOI https://doi.org/10.1051/bioconf/20201700234
Published online 28 February 2020
  • S. Ferderbar, E.C. Pereira, E. Apolinário, et al., Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus, Diabetes Metab. Res. Rev., 23(1), 35–42 (2007) [PubMed] [Google Scholar]
  • K.K. Griendling, G.A. FitzGerald, Oxidative stress and cardiovascular injury, Part I: basic mechanisms and in vivo monitoring of ROS , Circulat., 108, 1912–1916 (2003) [CrossRef] [Google Scholar]
  • A.N. Zakirova, R.R. Gabidullin, N.E. Zakirova, Clinicogemodynamic effects of carvedylol, influence on lipid peroxidation and inflammation markers in patients with CHD, Heart failure, 7, 1 (2006) [Google Scholar]
  • T. Heitzer, T.K. Schlinzig, et al., Endothelial dysfunction, oxidative stress and risk of cardiovascular events in patients with coronary disease, Circulat., 104, 263–268 (2001) [CrossRef] [Google Scholar]
  • U. Landmesser, S. Spiekermann, S. Dikalov et al., Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase, Circulat., 106, 3073–3078 (2002) [CrossRef] [Google Scholar]
  • F.J. Giordano, Oxygen, oxidative stress, hypoxia, and heart failure, J. Clin. Invest., 115, 500–508 (2005) [CrossRef] [PubMed] [Google Scholar]
  • A. Lopez Farre, S. Casado, Heart failure, redox alterations, and endothelial dysfunction, Hypertens., 38, 1400–1405 (2001) [CrossRef] [Google Scholar]
  • P.G. Storozhuk, Enzymes of direct and indirect antiradical protection of red blood cells and their role in initiation of hemoglobin oxygenation, antibacterial protection and cell division processes, Intensive care bull., 3.8, 13 (2003) [Google Scholar]
  • T.A. Pushkina, E.S. Tokayev, T.S. Popova, E.N. Borodina, Superoxide-dismutase as a part of antioxidant therapy: the state of the issue and prospects, J. named after A.A. Lomonosov, N.V. Sklifosovsky “Emergency Medical Aid”, 4, 42–47 (2016) [Google Scholar]
  • S.S. Kupchinskaya, Biological and pathogenetic role of antioxidant system in functioning of living organism, Togliatti Med. Consult., 1-2, 56–593 (2014) [Google Scholar]
  • T.V. Serota, M.V. Zakharchenko, M.N. Kondrashova, Cytoplasmic superoxide dismutase activity a sensitive indicator of the state of antioxidant system of rat liver and brain, Biomed. Chem., 60(1), 63–71 (2014) [Google Scholar]
  • Y. Yamazaki, T. Takao, Metalation states versus enzyme activities of Cu, Zn-superoxide dismutase probed by electrospray ionization mass spectrometry, Anal. Chem., 80(21), 8246–8252 (2008) [CrossRef] [PubMed] [Google Scholar]
  • V.E. Volykhina, E.V. Shafranovskaya, Superoxyddismutases: structure and properties (in Russian), Vestnik VGMU, 8(4), 1–18 (2009) [Google Scholar]
  • M. Majewska, M. Podsiad, H. Czeczot, B. Grytner-Zięcina. Hymenolepis diminuta: Experimental studies on the antioxidant system with short and long term infection periods in the rats Experim. Parasitol., 129(2), 158–163 (2011) [CrossRef] [Google Scholar]
  • J.S. Seo, J.Y. Park, J. Choi, et al., NADPH Oxidase Mediates Depressive Behavior Induced by Chronic Stress in Mice, The J. of Neurosci., 32(28), 9690–9699 (2012) [CrossRef] [Google Scholar]
  • M.B. Iversen, R.H. Gottfredsen, U.G. Larsen, et al., Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation, Free Radical Biol. and Med., 97, 478–488 (2016) [CrossRef] [Google Scholar]
  • K. Morales, M.N. Olesen, E.T. Poulsen, et al., The effects of hypochlorous acid and neutrophil proteases on the structure and function of extracellular superoxide dismutase, Free Radical Biol. and Med., 81, 38–46 (2015) [CrossRef] [Google Scholar]
  • J. Zhang, B. Wang, H. Wang, H. He, C. Yu, Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death, Free Radical Biol. and Med., 129, 268–278 (2018) [CrossRef] [Google Scholar]
  • U. Forstermann, W.S. Sessa, Nitric oxide syntheses: regulation and function, Europ. Heart J., 33(7), 829–837 (2012) [CrossRef] [PubMed] [Google Scholar]
  • D.J. Bonda, X. Wang, G. Perry et al., Oxidative stress in Alzheimer disease: a possibility for prevention, Neuropharmacol., 59 (4-5), 290–294 (2010) [CrossRef] [Google Scholar]
  • E. Tokuda, T. Nomura, S. Ohara, et al., A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis, Biochim. et Biophys. Acta (BBA) Molec. Basis of Disease, 1864(6), Part A, 2119–2130 (2018) [CrossRef] [Google Scholar]
  • H. Fujita, et al., Reduction of renal superoxide dismutase in progressive diabetic nephropathy, J. Am. Soc. Nephrol., 20(6), 1303–1313 (2009) [Google Scholar]
  • M.A. Lutskiy, T.V. Kuksova, M.A. Smelianets, Y.P. Lushnikova, Endogenous system of antioxidant protection activity in the process of organism life activity, Success. of modern sci., 12-1, 20–23 (2014) [Google Scholar]
  • A.A. Boldyrev, Oxidative stress and brain, Soros Educat. J., 7(4), 21–28 (2001) [Google Scholar]
  • Ran Qitao et al., Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis, J. Biol. Chem. 53, 55137–55146 (2004) [Google Scholar]
  • K.K. Shulgin, T.N. Popova, T.I. Rakhmanova, Obtaining and properties of the glutathione peroxidase (in Russian), Applied biochem. and microbial., 44(3), 276–280 (2008) [CrossRef] [Google Scholar]
  • N.V. Bezruchko, G.K. Rubtsov, N.B. Ganyaeva, et al., Catalysis of biological media of the human body and its clinical and biochemical termination in the evaluation of endotoxemia, Vestnik TSPU, 7(122), 94–98 (2012) [Google Scholar]
  • T.N. Popova, T.I. Rakhmanova, S.S. Popov, Medical enzymology, a textbook (Voronezh State University, Voronezh, 2008) [Google Scholar]
  • S.V. Uglanova, M.V. Popov, S.V. Kurova, et al., Stabilization of antioxidant enzymes in complexes and conjugates with block copolymers: treatment prospects for central nervous system diseases, Moscow university bulletin, ser. 2. Chemistry, 51(3), 227–23 (2010) [Google Scholar]
  • N.P. Chesnokova, E.V. Ponukalina, M.N. Bizenkova, General characteristics of sources of free radicals and antioxidant systems formation, Successes of modern sci., 7, 37–41 (2006) [Google Scholar]
  • M.A. Korolyuk, L.I. Ivanova, I.T. Mayorova, Method for determination of catalase activity, Lab., 1, 16–19 (1988) [Google Scholar]
  • D.I. Maksimovich, E.O. Korik, Investigation of the antioxidant enzyme activity in rats with the experimental metabolic syndrome, INTERNAUKA, 12-1(16), 10–12 (2017) [Google Scholar]
  • Guidance on the experimental (preclinical) study of new pharmacological substances, under the general editorship of R.U. Khabrieva, 2-published, revised and added (Medicine, Moscow, 2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.