Open Access
Issue
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 04001
Number of page(s) 11
Section Bioinformatics and Data Mining
DOI https://doi.org/10.1051/bioconf/20214104001
Published online 22 December 2021
  • H. Jiang, H. Ma, W. Qian, M. Gao, and Y. Li, “An Automatic Detection System of Lung Nodule Based on Multigroup Patch-Based Deep Learning Network, ” IEEE J. Biomed. Heal. Informatics, vol. 22, no. 4, pp. 1227–1237, (2018), doi: 10.1109/JBHI.2017.2725903 [Google Scholar]
  • R. Golan, C. Jacob, and J. Denzinger, “Lung nodule detection in CT images using deep convolutional neural networks, ” Proc. Int. Jt. Conf. Neural Networks, vol. 2016. Octob, no. 1, pp. 243–250, (2016), doi: 10.1109/IJCNN.2016.7727205 [Google Scholar]
  • Yayasan Kanker Indonesia, “Hari Kanker Sedunia 2020. Kanker Paru di Indonesia Sebabkan Lebih dari 26 ribu Orang Meninggal.” http://yayasankankerindonesia.org/article/hari-kanker-sedunia-2020-kanker-paru-di-indonesiasebabkan-lebih-dari-26-ribu-orang-meninggal (accessed Dec. 30, 2020) [Google Scholar]
  • F. Shaukat, G. Raja, and A. F. Frangi, “Computeraided detection of lung nodules: a review, ” J. Med. Imaging, vol. 6, no. 02, p. 1, (2019), doi: 10.1117/1.jmi.6.2.020901 [Google Scholar]
  • W. Cao, R. Wu, G. Cao, and Z. He, “A Comprehensive Review of Computer-Aided Diagnosis of Pulmonary Nodules Based on Computed Tomography Scans, ” IEEE Access, vol. 8, pp. 154007–154023, (2020), doi: 10.1109/ACCESS.2020.3018666 [Google Scholar]
  • R. Tekade and K. Rajeswari, “Lung Cancer Detection and Classification using Deep Learning, ” IEEE Xplore, vol. 4, pp. 5–9, (2018) [Google Scholar]
  • J. Gong, J. Liu, L. Wang, X. Sun, B. Zheng, and S. Nie, “Physica Medica Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor fi ltering with local image feature analysis, ” vol. 46, no. February, pp. 124–133, (2018), doi: 10.1016/j.ejmp.2018.01.019 [Google Scholar]
  • S. Widodo, “Classification Of Lung Nodules And Arteries In Computed Tomography Scan Image Using Principle Component Analysis, ” pp. 153–158, (2017) [Google Scholar]
  • D. Jayaraj and S. Sathiamoorthy, “Random Forest based Classification Model for Lung Cancer Prediction on Computer Tomography Images, ” Proc. 2nd Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2019., no. Icssit, pp. 100–104, (2019), doi: 10.1109/ICSSIT46314.2019.8987772 [Google Scholar]
  • A. Tariq and M. U. Akram, “Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier, ” vol. 11, no. 2, pp. 331–336, (2013) [Google Scholar]
  • X. Huang, W. Sun, T. L. (Bill) Tseng, C. Li, and W. Qian, “Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks, ” Comput. Med. Imaging Graph., vol. 74, pp. 25–36, (2019), doi: 10.1016/j.compmedimag.2019.02.003 [Google Scholar]
  • G. Kasinathan, S. Jayakumar, A. H. Gandomi, M. Ramachandran, S. J. Fong, and R. Patan, “Automated 3-D lung tumor detection and classification by an active contour model and CNN classifier, ” Expert Syst. Appl., vol. 134, pp. 112–119, (2019), doi: 10.1016/j.eswa.2019.05.041 [Google Scholar]
  • H. Jiang, H. Ma, W. Qian, M. Gao, and Y. Li, “An Automatic Detection System of Lung Nodule Based on Multigroup Patch-Based Deep Learning Network, ” IEEE J. Biomed. Heal. Informatics, vol. 22, no. 4, pp. 1227–1237, (2018), doi: 10.1109/JBHI.2017.2725903 [Google Scholar]
  • R. V. M. da Nóbrega, P. P. Rebouças Filho, M. B. Rodrigues, S. P. P. da Silva, C. M. J. M. Dourado Júnior, and V. H. C. de Albuquerque, “Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks, ” Neural Comput. Appl., vol. 32, no. 15, pp. 11065–11082, (2020), doi: 10.1007/s00521-018-3895-1 [Google Scholar]
  • A. O. De Carvalho Filho, W. B. De Sampaio, A. C. Silva, A. C. de Paiva, R. A. Nunes, and M. Gattass, “Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index, ” Artif. Intell. Med., vol. 60, no. 3, pp. 165–177, (2014), doi: 10.1016/j.artmed.2013.11.002 [Google Scholar]
  • G. Zhang et al., “Automatic nodule detection for lung cancer in CT images : A review, ” Comput. Biol. Med., vol. 103, no. August, pp. 287–300, 2018. doi: 10.1016/j.compbiomed.2018.10.033. [Google Scholar]
  • V. A. Binson and M. Subramoniam, “Advances in Early Lung Cancer Detection : A Systematic Review, ” pp. 0–4, (2018) [Google Scholar]
  • X. Li et al., “Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection, ” Artif. Intell. Med., vol. 103, no. October 2018. p. 101744, (2020), doi: 10.1016/j.artmed.2019.101744 [Google Scholar]
  • S. Anitha and T. R. G. Babu, “An Efficient Method for the Detection of Oblique Fissures from Computed Tomography images of Lungs, ” (2019) [Google Scholar]
  • S. G. Armato et al., “The Lung Image Database Consortium „ LIDC … and Image Database Resource Initiative „ IDRI … : A Completed Reference Database of Lung Nodules on CT Scans, ” no. February, pp. 915–931, (2011) [Google Scholar]
  • S. Diciotti, G. Picozzi, M. Falchini, M. Mascalchi, N. Villari, and G. Valli, “3-D segmentation algorithm of small lung nodules in spiral CT images, ” IEEE Trans. Inf. Technol. Biomed., vol. 12, no. 1, pp. 7–19, (2008), doi: 10.1109/TITB.2007.899504 [Google Scholar]
  • H. C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning, ” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285–1298, (2016), doi: 10.1109/TMI.2016.2528162 [Google Scholar]
  • I. Sluimer, A. Schilham, M. Prokop, and B. Van Ginneken, “Computer analysis of computed tomography scans of the lung: A survey, ” IEEE Trans. Med. Imaging, vol. 25, no. 4, pp. 385–405, (2006), doi: 10.1109/TMI.2005.862753 [Google Scholar]
  • S. P. Sankar and D. E. George, “Regression Neural Network segmentation approach with LIDC-IDRI for lung lesion, ” J. Ambient Intell. Humaniz. Comput., no. 0123456789, (2020), doi: 10.1007/s12652-020-02069-w [Google Scholar]
  • J. Kuruvilla and K. Gunavathi, “Lung cancer classification using neural networks for CT images, ” Comput. Methods Programs Biomed., vol. 113, no. 1, pp. 202–209, (2014), doi: 10.1016/j.cmpb.2013.10.011 [Google Scholar]
  • Y. Chunran and W. Yuanyuan, “Nodule on CT Images, ” pp. 2–6, (2018) [Google Scholar]
  • T. Messay, R. C. Hardie, and T. R. Tuinstra, “Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset, ” Med. Image Anal., vol. 22, no. 1, pp. 48–62, (2015), doi: 10.1016/j.media.2015.02.002 [Google Scholar]
  • H. Shaziya and K. Shyamala, “Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning, ” 2020 IEEE Pune Sect. Int. Conf. PuneCon 2020., pp. 195–201, (2020), doi: 10.1109/PuneCon50868.2020.9362463 [Google Scholar]
  • R. Arora, I. Saini, and N. Sood, “Modified UNet++ Model: A Deep Model for Automatic Segmentation of Lungs from Chest X-ray Images, ” pp. 166–169, (2021), doi: 10.1109/icsccc51823.2021.9478101 [Google Scholar]
  • Q. Wang, F. Shen, L. Shen, J. Huang, and W. Sheng, “Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network, ” J. Digit. Imaging, vol. 32, no. 6, pp. 971–979, (2019), doi: 10.1007/s10278-01900221-3 [Google Scholar]
  • A. Masood et al., “Automated Decision Support System for Lung Cancer Detection and Classification via Enhanced RFCN with Multilayer Fusion RPN, ” IEEE Trans. Ind. Informatics, vol. 16, no. 12, pp. 7791–7801, (2020), doi: 10.1109/TII.2020.2972918 [Google Scholar]
  • S. Kido, Y. Hirano, and N. Hashimoto, “Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN), ” 2018 Int. Work. Adv. Image Technol. IWAIT 2018., pp. 1–4, (2018), doi: 10.1109/IWAIT.2018.8369798 [Google Scholar]
  • Q. Dou, H. Chen, L. Yu, J. Qin, and P. A. Heng, “Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection, ” IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1558–1567, (2017), doi: 10.1109/TBME.2016.2613502 [Google Scholar]
  • M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, “Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network, ” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1207–1216, (2016), doi: 10.1109/TMI.2016.2535865 [Google Scholar]
  • H. Han, H. Fangfang, S. Bowean, M. William, and L. Zhengrong, “Fast and adaptive detection of pulmonary nodules in thoracic CT images using a Contextual Clustering based region growing, ” Int. J. Eng. Technol., vol. 7, no. 2, pp. 106–108, (2018), doi: 10.14419/ijet.v7i2.24.12010 [Google Scholar]
  • L. Böröczky, L. Zhao, and K. P. Lee, “Feature subset selection for improving the performance of false positive reduction in lung nodule CAD, ” IEEE Trans. Inf. Technol. Biomed., vol. 10, no. 3, pp. 504–511, (2006), doi: 10.1109/TITB.2006.872063 [Google Scholar]
  • T. Jia, D. Z. Zhao, Y. Wei, X. H. Zhu, and X. Wang, “Computer-aided lung nodule detection based on CT images, ” 2007 IEEE/ICME Int. Conf. Complex Med. Eng. C. 2007., no. 2, pp. 816–819, (2007), doi: 10.1109/ICCME.2007.4381854 [Google Scholar]
  • A. R. Talebpour, H. R. Hemmati, and M. Z. Hosseinian, “Automatic lung nodules detection in computed tomography images using nodule filtering and neural networks, ” 22nd Iran. Conf. Electr. Eng. ICEE 2014., no. Icee, pp. 1883–1887, (2014), doi: 10.1109/IranianCEE.2014.6999847 [Google Scholar]
  • H. Shi, Z. Peng, and H. Wan, “Pulmonary Nodules Detection Based on CNN Multi-scale Feature Fusion, ” pp. 86–90, (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.