Open Access
Issue
BIO Web Conf.
Volume 41, 2021
The 4th International Conference on Bioinformatics, Biotechnology, and Biomedical Engineering (BioMIC 2021)
Article Number 04002
Number of page(s) 5
Section Bioinformatics and Data Mining
DOI https://doi.org/10.1051/bioconf/20214104002
Published online 22 December 2021
  • W. H. Organization, World malaria report 2019.. 2019. [Google Scholar]
  • H. A. Nugroho, S. A. Akbar, and E. E. H. Murhandarwati, “Feature extraction and classification for detection malaria parasites in thin blood smear, ” ICITACEE 2015. 2nd Int. Conf. Inf. Technol. Comput. Electr. Eng. Green Technol. Strength. Inf. Technol. Electr. Comput. Eng. Implementation, Proc., vol. 1, no. c, pp. 197–201, 2016. [Google Scholar]
  • A. S. Abdul Nasir, M. Y. Mashor, and Z. Mohamed, “Segmentation based approach for detection of malaria parasites using moving kmeans clustering, ” 2012 IEEE-EMBS Conf. Biomed. Eng. Sci. IECBES 2012., no. December 2012. pp. 653–658, 2012. [Google Scholar]
  • S. Kareem, I. Kale, and R. C. S. Morling, “Automated malaria parasite detection in thin blood films:-A hybrid illumination and color constancy insensitive, morphological approach, “ IEEE Asia-Pacific Conf. Circuits Syst. Proceedings, APCCAS, pp. 240–243, 2012. [Google Scholar]
  • J. Somasekar and B. Eswara Reddy, “Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging, “ Comput. Electr. Eng., vol. 45, pp. 336–351, 2015. [Google Scholar]
  • M. Elter, E. Haßlmeyer, and T. Zerfaß, “Detection of malaria parasites in thick blood films, ” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5140–5144, 2011. [Google Scholar]
  • J. E. Arco, J. M. Górriz, J. Ramírez, I. Álvarez, and C. G. Puntonet, “Digital image analysis for automatic enumeration of malaria parasites using morphological operations, “ Expert Syst. Appl., vol. 42, no. 6, pp. 3041–3047, 2015. [Google Scholar]
  • S. R. Abidin, U. Salamah, and A. S. Nugroho, “Segmentation of malaria parasite candidates from thick blood smear microphotographs image using active contour without edge, “ Proc. 2016.1st Int. Conf. Biomed. Eng. Empower. Biomed. Technol. Better Futur. IBIOMED 2016., pp. 8–13, 2016. [Google Scholar]
  • F. M. Azif, H. A. Nugroho, and S. Wibirama, “Adaptive Threshold Determination Based on Entropy in Active Contour without Edge Method for Malaria Parasite Candidate Detection, “ Proc. 2018.4th Int. Conf. Sci. Technol. ICST 2018., pp. 0–5, 2018. [Google Scholar]
  • I. R. Dave, “Image analysis for malaria parasite detection from microscopic images of thick blood smear, “ Proc. 2017.Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2017., vol. 2018. Janua, pp. 1303–1307, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.