Open Access
BIO Web Conf.
Volume 48, 2022
The 2nd International Conference “Sport and Healthy Lifestyle Culture in the XXI Century” (SPORT LIFE XXI)
Article Number 03002
Number of page(s) 7
Section General Issues of Healthy Food Production
Published online 29 June 2022
  • FAO/WHO. Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London Ontario: World Health Organization (2002). [Google Scholar]
  • J.S. Weese, H. Martin, Assessment of commercial probiotic bacterial contents and label accuracy, Can Vet J, 52(1), 43-6 (2011). [PubMed] [Google Scholar]
  • J.N. Patro, P. Ramachandran, T. Barnaba, M.K. Mammel, J.L. Lewis, C.A. Elkins, Culture-Independent Metagenomic Surveillance of Commercially Available Probiotics with High-Throughput Next-Generation Sequencing. mSphere, 1(2), e00057-16 (2016). [Google Scholar]
  • W. Sybesma, D. Molenaar, I.J. Wv, K. Venema, R. Kort, Genome instability in Lactobacillus rhamnosus GG. Appl Environ Microbiol, 79(7), 2233-9 (2013) 10.1128/AEM.03566-12. [CrossRef] [PubMed] [Google Scholar]
  • C. Llor, L. Bjerrum, Antimicrobial resistance: risks associated with antibiotic overuse and initiatives to reduce the problem, Ther Adv Drug Saf, 5(6), 229-41 (2014). 10.1177/2042098614554919. [CrossRef] [PubMed] [Google Scholar]
  • S. Fu, Q. Yang, F. He, R. Lan, J. Hao, P. Ni, Y. Liu, R. Li, National safety survey of animal-use commercial probiotics and its spillover effects from farm to human: an emerging threat to public health, Clin Infect Dis, 70(11), 2386-95 (2019). [Google Scholar]
  • D. Pradhan, R.H. Mallappa, S. Grover, Comprehensive approaches for assessing the safety of probiotic bacteria, Food Control, 108, 106872 (2020). [CrossRef] [Google Scholar]
  • L.G. Pell, R.G. Horne, S. Huntley et al, Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Sci Rep 11 15893. 10.1038/s41598-021-94997-6 (2021) [Google Scholar]
  • A. Rouanet, S. Bolca, A. Bru, I. Claes, H. Cvejic, H. Girgis, A. Harper, S.N. Lavergne. S. Mathys, Live biotherapeutic products, A Road Map for Safety Assessment, Front Med., 7, 237 (2020). [CrossRef] [Google Scholar]
  • R. Soni, S. Nanjani, H. Keharia, Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4, Genomics, 113(1), 861-73 (2020). [Google Scholar]
  • E. Salvetti, L. Orrù, V. Capozzi, A. Martina, A. Lamontanara, D. Keller, H. Cash, G. Felis, L. Cattivelli, S. Torriani, G. Spano, Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl Microbiol Biotechnol., 100(10), 4595-605 (2016). 10.1007/s00253-016-7416-9. [CrossRef] [PubMed] [Google Scholar]
  • A. Lerner, Y. Shoenfeld, T. Matthias, Probiotics: If It Does Not Help It Does Not Do Any Harm. Really?, Microorganisms, 7(4), 104 (2019). [CrossRef] [Google Scholar]
  • J.M. Castro-González, P. Castro, H. Sandoval, D. Castro-Sandoval, Probiotic lactobacilli precautions, Front Microbiol (2019), 10:375. 10.3389/fmicb.2019.00375. [CrossRef] [Google Scholar]
  • J. Li, Z.B. Wu, Z. Zhang, J.W. Zha, S.Y. Qu, X.Z. Qi, G.X. Wang, F. Ling, Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀), Fish Shellfish Immunol., 93, 1047-1055 (2019). 10.1016/j.fsi.2019.08.047. [CrossRef] [Google Scholar]
  • Y. Yi, Z. Zhang, F. Zhao, H. Liu, L. Yu, J. Zha, G. Wang, Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus, Fish Shellfish Immunol., 78, 322330 (2018). 10.1016/j.fsi.2018.04.055. [Google Scholar]
  • M. Ye, C. Wei, A. Khalid, Q. Hu, R. Yang, B. Dai, H. Cheng, Z. Wang, Effect of Bacillus velezensis to substitute in-feed antibiotics on the production, blood biochemistry and egg quality indices of laying hens, BMC Vet Res., 16(1), 400 (2020). 10.1186/s12917-020-02570-6. [CrossRef] [Google Scholar]
  • F. Khalid, A. Khalid, Y. Fu, Q. Hu, Y. Zheng, S. Khan, Z. Wang, Potential of Bacillus velezensis as a probiotic in animal feed: a review, J Microbiol., 59(7), 627-633 (2021). 10.1007/s12275-021-1161-1. [CrossRef] [PubMed] [Google Scholar]
  • L.J. Fooks, G.R. Gibson, In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens, FEMS Microbiol Ecol., 39(1), 67-75(2002). 10.1111/j.1574-6941.2002.tb00907.x. [CrossRef] [Google Scholar]
  • F.M. Elshaghabee, N. Rokana, R.D. Gulhane, et al., Bacillus as potential probiotics: status, concerns, and future perspectives, Front Microbiol., 81490 (2017). 10.3389/fmicb.2017.01490. [Google Scholar]
  • M. Ye, X. Tang, R. Yang et al, Characteristics and application of a novel species of Bacillus: Bacillus velezensis, ACS Chem Biol., 13(3), 500-5 (2018). 10.1021/acschembio.7b00874. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.