Open Access
Issue
BIO Web Conf.
Volume 48, 2022
The 2nd International Conference “Sport and Healthy Lifestyle Culture in the XXI Century” (SPORT LIFE XXI)
Article Number 03007
Number of page(s) 10
Section General Issues of Healthy Food Production
DOI https://doi.org/10.1051/bioconf/20224803007
Published online 29 June 2022
  • Y. Xu, B. Shi, S. Yan, J. Li, T. Li, Y. Guo, X. Guo, Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs, Czech J Anim Sci., 59, 156-163 (2014). [CrossRef] [Google Scholar]
  • O. Keser, T. Bilal, H.C. Kutay, I. Abas, H. Eseceli, Effects of chitosan oligosaccharide and/or Beta-glucan supplementation to diets contained organic zinc on performance and some blood indices in broilers, Pak Vet J., 32, 15-19 (2011). [Google Scholar]
  • S. Senel, S.J. McClure, Potential applications of chitosan in veterinary medicine, Adv Drug Deliv Rev, 56, 1467-1480 (2004). [CrossRef] [PubMed] [Google Scholar]
  • M. Friedman, V.K. Juneja, Review of antimicrobial and antioxidative activities of chitosans in food, J Food Prot, 73, 1737-1761 (2010). [CrossRef] [PubMed] [Google Scholar]
  • T. Tufan, S. Arslan, Dietary supplementation with chitosan oligosaccharide affects serum lipids and nutrient digestibility in broilers, South African Journal of Science, 50(5) (2020). [Google Scholar]
  • X. Yue, L. Hu, X. Fu, M. Lv, X. Han, Dietary chitosan-Cu chelate affects growth performance and small intestinal morphology and apoptosis in weaned piglets, Czech Journal of Animal Science, 62(1), 15-21 (2017). [Google Scholar]
  • C. Nuengjamnong, K. Angkanaporn, Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers, Italian Journal of Animal Science, 17(2), 428-435 (2018). [CrossRef] [Google Scholar]
  • B.L. Shi, D.F. Li, X.S. Piao, S.M. Yan, Effects of chitosan on growth performance and energy and protein utilization in broiler chickens, Br Poult Sci., 46, 516-519 (2005). [CrossRef] [PubMed] [Google Scholar]
  • Razdan, & D. Pettersson, Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens, British Journal of Nutrition, 72(2), 277-288 (1994). [CrossRef] [PubMed] [Google Scholar]
  • A. Kalińska, S. Jaworski, M. Wierzbicki, Ma. Gołębiewski, Silver and copper nanoparticles an alternative in future mastitis treatment and prevention? International Journal of Molecular Sciences, 20(7) (2019). [Google Scholar]
  • E.A. Hadrami, L.R. Adam, E.I. Hadrami, F. Daayf, Chitosan in plant protection, Mar Drugs, 8, 968-987 (2010). [CrossRef] [PubMed] [Google Scholar]
  • M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: A state of the art review, Int J Food Microbiol, 144, 51-63, (2010). [CrossRef] [PubMed] [Google Scholar]
  • M. Vargas, C. Gonzalez-Martinez, Recent patents on food applications of chitosan, Recent Pat Food Nutr Agric, 2, 121-128 (2010). [CrossRef] [PubMed] [Google Scholar]
  • Egorov I.A., Manukyan V.A., Lenkova T.N., Egorova T.A. et al, Methodological manual on feeding of agricultural poultry, Sergiev Posad, 215 (2021). [Google Scholar]
  • M.A. Ehrmann, P. Kurzak, J. Bauer, R.F. Vogel. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry, J Appl Microbiol, 92, 966-975 (2002). [CrossRef] [PubMed] [Google Scholar]
  • M. Botes, B. Loos, C.A. van Reenen, L.M. Dicks, Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and antiinflammatory medicaments, Arch Microbiol, 190, 573-584 (2008). [CrossRef] [PubMed] [Google Scholar]
  • R.L. Huang, Z.Y. Deng, C. Yang, Y.L. Yin, M.Y. Xie, G.Y. Wu, T.J. Li, L.L. Li, Z.R. Tang, P. Kang, Z.P. Hou, D. Deng, H. Xiang, X.F. Kong, Y.M. Guo, Dietary oligochitosan supplementation enhances immune status of broilers, J Sci Food Agric, 87, 153-159 (2007). [CrossRef] [Google Scholar]
  • A. P. Burnens, J. Stanley, R. Morgenstern, and J. Nicolet, Gastroenteritis associated with Helicobacter pullorum, Lancet, 344, 1569-1570 (1994). [CrossRef] [Google Scholar]
  • V.D. Francesco, A. Zullo, C. Hassan, F. Giorgio, R. Rosania, & E. Ierardi, Mechanisms of Helicobacter pylori antibiotic resistance: An updated appraisal, World journal of gastrointestinal pathophysiology, 2(3), 35-41 (2011). [CrossRef] [PubMed] [Google Scholar]
  • L.Y. Zheng, J.F. Zhu, Study on antimicrobial activity of chitosan with different molecular weights, Carbohydr Polym, 54, 527-530 (2003). [CrossRef] [Google Scholar]
  • Y. Zhang, J. Zhou, Z. Dong, G. Li, J. Wang, Y. Li, D. Wan, H. Yang, Y. Yin, Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets, (2019). [Google Scholar]
  • C.S. Hölzel, C. Müller, K.S. Harms, S. Mikolajewski, S. Schäfer, K. Schwaiger, Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance, Environ. Res, 113, 21-27 (2012). [CrossRef] [Google Scholar]
  • H. Hasman, and F.M. Aarestrup, tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance, Antimicrob. Agents Chemother, 46, 1410-1416 (2002). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.