Open Access
BIO Web Conf.
Volume 50, 2022
9th International Workshop on Grapevine Downy and Powdery Mildews (GDPM 2022)
Article Number 01004
Number of page(s) 4
Section Breakthrough Technologies
Published online 05 August 2022
  • Bomberger, R., Black, C., Hoheisel, G., Miller, T., Moyer M., Rayapati, N., Zasada, I., Walsh, D. 2021. Pest Management Guide for Grapes in Washington. Hoheisel, G. and Moyer, M. (Editors). Pp.62. Washington State University Extension. EB0762. [Google Scholar]
  • Brown, D.L., D.K. Giles, M.N. Oliver, P. Klassen. 2008. Targeted spray technology to reduce pesticide runoff from dormant applied orchards. Crop Protection, 27, 545-552. [CrossRef] [Google Scholar]
  • Damicone, J.P., 2014. Fungicide resistance management. Oklahoma State Univ. EPP-7663. Online Dec. 2021 [Google Scholar]
  • Derksen, R.C., H. Zhu, R.D. Fox, R.D. Brazee, C.R. Krause. 2007. Coverage and drift produced by air induction and conventional hydraulic nozzles used for orchard applications. Transactions of the ASABE, 50(5), 1493-1501. [CrossRef] [Google Scholar]
  • DIRECTIVE 2009/128/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Retrieved November 3, 2021, from [Google Scholar]
  • Fox, R.D., R.C. Derksen, H. Zhu, R.D. Brazee, S.A. Svenssson. 2008. A history of air-blast sprayer development and future prospects. Transactions of the ASABE, 51, (2), 405-410. [CrossRef] [Google Scholar]
  • Gallardo, K. and Galinato, S. 2021. 2019 cost estimates of establishing producing and packing Gala apples in Washington State. WSU Extension Publication. TB18. [Google Scholar]
  • Giametta, F., Brunetti, L., Romaniello, R. and Bianchi, B., 2015. Experimental tests on a specific machine for distribution of pesticides in vineyards of Apulian Region: size and ecological criteria. InProceedings of the 8th International Conference on Environmental and Geological Science and Engineering (EG’15), 38, 239-246. [Google Scholar]
  • Grella, M., Gallart, M., Marucco, P., Balsari, P. and Gil, E., 2017. Ground deposition and airborne spray drift assessment in vineyard and orchard: The influence of environmental variables and sprayer settings. Sustainability, 9(5), 728. [CrossRef] [Google Scholar]
  • Grella, M., Marucco, P. and Balsari, P., 2019. Toward a new method to classify the airblast sprayers according to their potential drift reduction: Comparison of direct and new indirect measurement methods. Pest Management Science, 75(8), 2219-2235. [PubMed] [Google Scholar]
  • Helepciuc F-E, Todor A (2021) Evaluating the effectiveness of the EU’s approach to the sustainable use of pesticides. PLoS ONE 16(9), e0256719. [CrossRef] [PubMed] [Google Scholar]
  • Kunova A, Pizzatti C, Saracchi M, Pasquali M, Cortesi P. 2021. Grapevine Powdery Mildew: Fungicides for Its Management and Advances in Molecular Detection of Markers Associated with Resistance. Microorganisms, 9(7), 1541. [CrossRef] [PubMed] [Google Scholar]
  • Landers, A.J. 2008. Innovative technologies for the precise application of pesticides in orchards and vineyards In: Aspects of Applied Biology 86. International advances in pesticide application. pp. 343348. [Google Scholar]
  • McCoy, ML., Hoheisel, G.A., Khot, L., Moyer, M.M. 2021a. Adjusting Air-Assistance and Nozzle style for optimized Airblast Sprayer Use in Eastern Washington Vineyards. Catalyst: Discovery into Practice. Catalyst, 2021. 21001 [Google Scholar]
  • McCoy, ML., Hoheisel, G.A., Khot, L., Moyer, M.M. 2021b. Assessment of Three Commercial Over-the-Row Sprayer Technologies in Eastern Washington Vineyards. American Journal of Enology and Viticulture, 72(3), 217-229 [CrossRef] [Google Scholar]
  • Miles, T.D., Neill, T.M., Colle, M., Warneke, B, Robinson, G., Sterigiopoulus, I. and Mahaffee, W.F. 2021. Allele-specific detection methods for QoI fungicide resistant Erysiphe necator in vineyards. Plant Disease, 105, 175-182. [CrossRef] [PubMed] [Google Scholar]
  • Sinha, R., Ranjan, R., Khot, L.R., Hoheisel, G.A. and Grieshop, M.J., 2020. Comparison of within canopy deposition for a solid set canopy delivery system (SSCDS) and an axial–fan airblast sprayer in a vineyard. Crop Protection, 132, 105-124. [Google Scholar]
  • Scholthof, KB. 2007. The disease triangle: pathogens, the environment and society. Nature Reviews Microbiology 5, 152–156. [CrossRef] [PubMed] [Google Scholar]
  • Van Den Bosch, F., Paveley, N., Shaw, M., Hobbelen, P. and Oliver, R. 2011. The dose rate debate: does the risk of fungicide resistance increase or decrease with dose?. Plant Pathology, 60(4), 597-606. [CrossRef] [Google Scholar]
  • Warres, B., K. Johnson, K. Busher, C. Cameron, P.M. Brannen, D. Rogers, R. Covington, W. Mahaffee, and T. Neil. 2021. Efficacy of DMI (FRAC 3) fungicides for control of powdery mildew in a DMI-tolerant Erysiphe necator population, 2020. Plant Disease Management, Rep.15:PF014 [Google Scholar]
  • Willocquet, L. and Clerjeau, M., 1998. An analysis of the effects of environmental factors on conidial dispersal of Uncinula necator (grape powdery mildew) in vineyards. Plant Pathology, 47(3), 227-233. [CrossRef] [Google Scholar]
  • Willocquet, L., Berud, F., Raoux, L. and Clerjeau, M., 1998. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathology, 47(3), 234-242. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.