Open Access
BIO Web Conf.
Volume 52, 2022
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2022)
Article Number 00033
Number of page(s) 6
Published online 21 September 2022
  • A.V. Skalny, Bioelementology as an interdisciplinary integrative approach in life sciences: terminology, classification, perspectives, J. Trace Elem. Med. Biol., 25, S3–S10 (2011) [CrossRef] [Google Scholar]
  • S.V. Sabunin, V.I. Belyayev, N.E. Papin, Diselementosis – etiology, prophylaxis, treatment, Veterinarnyy vrach, 3, 39–43 (2014) [Google Scholar]
  • S. Shabunin, A. Nezhdanov, V. Mikhalev et al., Diselementosis as a risk factor of embryo loss in lactating cows, Turk. J. Vet. Anim. Sci., 41, 453–459 (2017) [Google Scholar]
  • E. Kalaeva, V. Kalaev, A. Chernitskiy et al., Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis, Vet. World, 13, 987–995 (2020) [Google Scholar]
  • V.A. Safonov, V.I. Mikhalev, A.E. Chernitskiy, Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation, Agricultural Biology, 53, 831–841 (2018) [Google Scholar]
  • M. Gabryszuk, K. Słoniewski, E. Metera et al. Content of mineral elements in milk and hair of cows from organic farms, J. Elem., 15, 259–267 (2010) [Google Scholar]
  • W.S. Swecker, Trace mineral feeding and assessment, Vet. Clin. North Am. Food Anim., 30, 671–688 (2014) [Google Scholar]
  • A. Herold, A.-E. Müller, R. Staufenbiel et al., Bovine trace mineral concentrations in different sample media with emphasis on fecal analysis, Tierarztl Prax Ausg G Grosstiere Nutztiere, 48, 5–14 (2020) [Google Scholar]
  • X.-J. Zhao, X.-Y. Wang, J.-H. Wang et al., Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows, Biol. Trace Elem. Res., 164, 43–49 (2015) [Google Scholar]
  • F. Chen, J. Gao, D. Wu et al. Clinical and pathologic features of a suspected selenium deficiency in captive plains zebras, Biol. Trace Elem. Res., 176, 114–119 (2017) [Google Scholar]
  • Y. Mehdi, I. Dufrasne, Selenium in cattle: a review, Molecules, 21, 545, (2016) [CrossRef] [PubMed] [Google Scholar]
  • D.K. Combs, Hair analysis as an indicator of mineral status of livestock, J. Anim. Sci., 65, 1753–1758 (1987) [CrossRef] [PubMed] [Google Scholar]
  • A. Przybylowicz, P. Chesy, M. Herman et al., Examination of distribution of trace elements in hair, fingernails and toenails as alternative biological materials. Application of chemometric methods, Cent. Eur. J. Chem., 10, 1590–1599 (2012). [Google Scholar]
  • R.C. Patra, D. Swarup, M.C. Sharma et al., Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units, Journal of Veterinary Medicine Series A, 53, 511–517 (2006) [CrossRef] [Google Scholar]
  • M. Spolders, M. Höltershinken, U. Meyer et al., Assessment of reference values for copper and zinc in blood serum of first and second lactating dairy cows, Vet. Med. Int., 2010, 194656, (2010) [Google Scholar]
  • S. Miroshnikov, S. Notova, T. Kazakova et al. The total accumulation of heavy metals in body in connection with the dairy productivity of cows, Environ. Sci. Pollut. Res., 28, 49852–49863 (2021) [CrossRef] [PubMed] [Google Scholar]
  • L. Perillo, F. Arfuso, G. Piccione et al. Quantification of some heavy metals in hair of dairy cows housed in different areas from Sicily as a bioindicator of environmental exposure—A preliminary study, Animals, 11, 2268, (2021) [CrossRef] [Google Scholar]
  • S. Miroshnikov, A. Kharlamov, O. Zavyalov et al., Method of sampling beef cattle hair for assessment of elemental profile, Pak. J. Nutr., 14, 632–636 (2015) [CrossRef] [Google Scholar]
  • M. Gabryszuk, J. Barszczewski, J. Dobrzynski, The mineral elements content in hair of cows from conventional and organic farms, Journal of Research and Applications in Agricultural Engineering, 63, 54–56 (2018) [Google Scholar]
  • S.A. Miroshnikov, O.A. Zavyalov, A.N. Frolov et al. The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus), Biol. Trace Elem. Res. 180, 56–62 (2017) [Google Scholar]
  • S.A. Miroshnikov, A.V. Skalny, O.A. Zavyalov et al. The reference values of hair content of trace elements in dairy cows of Holstein breed, Biol. Trace Elem. Res. 194, 145–151 (2020) [Google Scholar]
  • S.A. Miroshnikov, A.V. Kharlamov, O.A. Zavyalov et al., Peculiarities of formation of cattle elemental composition due to efficiency and belonging to some gender and age group, Herald of Beef Cattle Breeding, 92, 94–99 (2015) [Google Scholar]
  • I. Sleptsov, V. Machakhtyrova, G. Machakhtyrov et al., Age features of elemental status for the Kalmyk cattle breed under conditions of Yakutia, Agrarian Bulletin of the Urals, 192, 69–77 (2020) [CrossRef] [Google Scholar]
  • A.N. Frolov, O.A. Zavyalov, A.V. Kharlamov, Peculiarities of hair elemental composition and adaptability of imported heifers based on their productivity, Herald of Beef Cattle Breeding, 94, 39–44 (2015) [Google Scholar]
  • S. Miroshnikov, O. Zavyalov, A. Frolov et al. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals, Environ. Sci. Pollut. Res., 26, 18554–18564 (2019) [CrossRef] [PubMed] [Google Scholar]
  • D. Cygan-Szczegielniak, M. Stanek, E. Giernatowska et al., Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows, Folia Biol., 62, 163–169 (2014) [Google Scholar]
  • S.P. Zamana, Determination of chemical element composition of the hair cover in cattle, Sel'skokhozyaistvennaya Biologiya, 4, 121–125 (2006) [Google Scholar]
  • S.A. Miroshnikov, O.A. Zavyalov, A.N. Frolov et al., Reference ranges of concentrations of chemical elements in the wool of dairy cows, Animal Husbandry and Fodder Production, 102, 33–45 (2019) [CrossRef] [Google Scholar]
  • W.H. Mao, E. Albrecht, F. Teuscher et al. Growth-and breed-related changes of fetal development in cattle, Asian-Aust. J. Anim. Sci., 21, 640–647 (2008) [Google Scholar]
  • C.H. Krog, J.S. Agerholm, S.S. Nielsen, Fetal age assessment for Holstein cattle, PLoS ONE, 13, e0207682 (2018). [CrossRef] [PubMed] [Google Scholar]
  • Temporary maximum allowable levels of certain chemical elements and gossypol in feeds for farm animals and feed additives, USSR State Agriculture Committee (Gosagroprom USSR, Moscow, 1987) [Google Scholar]
  • Nutrient requirements of dairy cattle, National Research council (National Academy Press, Washington, DC, 2001) [Google Scholar]
  • Mineral tolerance of animals, National Research council (National Academy Press, Washington, DC, 2005) [Google Scholar]
  • C.C. O'Mary, M.C. Bell, N.N. Snead et al., Influence of ration copper on minerals in the hair of Hereford and Holstein calves, J. Anim. Sci. 31, 626–632 (1970) [CrossRef] [Google Scholar]
  • M.G. Skalnaya, V.A. Demidov, A.V. Skalny, About the limits of physiological (normal) content of Ca, Mg, P, Fe, Zn and Cu in human hair, Trace Elem. Med. (Moscow), 4, 5–10 (2003) [Google Scholar]
  • S.A. Miroshnikov, G.K. Duskaev, O.A. Zav'yalov et al., Wool composition centile parameters and detecting cattle elementosis, Vestnik of the Russian agricultural science, 2, 25–62 (2017) [Google Scholar]
  • S.A., Miroshnikov, A.V. Kharlamov, A.N. Frolov et al., Experience of individual correction of elemental status of cows with reproductive disorder, IOP Conf. Ser.: Earth Environ. Sci., 341, 012080, (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.