Open Access
Issue
BIO Web Conf.
Volume 52, 2022
International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2022)
Article Number 00047
Number of page(s) 9
DOI https://doi.org/10.1051/bioconf/20225200047
Published online 21 September 2022
  • A. A. Tikhonov, A. V. Kazakov, M. V. Prosviryakova, G. V. Novikova, Patent of the Russian Federation No. 2726565. Microwave installation with a quasi-stationary toroidal resonator for rendering decontaminated fat from crushed fat-containing raw materials in a continuous mode Bull. No. 20, No. 2019122928 (2020) [Google Scholar]
  • G. V. Novikova, M. V. Belova, O. V. Mikhailova, D. V. Tarakanov, I. A. Sorokin, A. A. Tikhonov, A. V. Kazakov, Patent of the Russian Federation No. 2734593. Microwave unit for defrosting and heating cow colostrum with coaxially located resonators Bull. No. 29, No. 2020104252 (2020) [Google Scholar]
  • A. A. Tikhonov, A. V. Kazakov, G. V. Novikova, B. I. Gorbunov, Patent No. 2710154 RF. Microwave installation with a conical resonator for dehydration and heat treatment of meat waste Bull. No. 36, No. 2019118371 (2019) [Google Scholar]
  • O. O. Drobakhin, P. I. Zabolotny, E. N. Privalov, Resonant properties of axially symmetric microwave resonators with conical elements, Radiophysics and Radio Astronomy 1 (4), 433–441 (2009) [Google Scholar]
  • V. N. Udalov, B. V. Vasiliev, G. V. Lysov, Yu. M. Egorov, Patent No. 1830197A3 RF, IPC N05V6/64. Microwave defroster Bull. No. 27, No. 4881731/09 (1993) [Google Scholar]
  • D. V. Poruchikov, A. N. Vasiliev, I. G. Ershova, G. V. Novikova, M. V. Belova, Patent No. 2694944 RF, IPC A47J39/00. Microwave unit for defrosting bovine colostrum Bull. No. 20, No. 2018143727 (2019) [Google Scholar]
  • G. V. Novikova, M. V. Prosviryakova, O. V. Mikhailova, I. G. Ershova, D. A. Tarakanov, A. A. Tikhonov, Patent No. 2752938 RF, IPC A47J.39/00. Two-module continuous-flow microwave unit for defrosting and heating cow colostrum Bull. No. 23, No. 2020141711 (2021) [Google Scholar]
  • G. V. Novikova, M. V. Prosviryakova, O. V. Mikhailova, I. G. Ershova, B. G. Zigan-Shin, D. A. Tarakanov, Patent No. 2752941 of the Russian Federation, MPK A47J.39/00. Radiotight multicavity unit for defrosting animal colostrum Bull. No. 23, No. 2020141715 (2021) [Google Scholar]
  • G. V. Novikova, V. F. Storchevoi M. V. Prosviryakova, O. V. Mikhailova, I. G. Ershova, D. A. Tarakanov, Patent No. 753424RF, IPC A47J.39/00. Continuous-flow microwave unit with quasi-stationary toroidal resonators for defrosting and heating animal colostrum Bull. No. 9, No. 2021104198 (2021) [Google Scholar]
  • M. V. Prosviryakova, O. V. Mikhailova, E. A. Shamin, G. V. Novikova, Electromagnetic Fields and Microwave Technologies (Knyaginino: GBOU VO NGIEU, 2020) [Google Scholar]
  • M. O. Binelo, V. Faoro, O. A. Kathatourian, B. Ziganshin, Airflow simulation and inlet pressure profile optimization of a grain storage bin aeration system, Computers and Electronics in Agriculture (2019) [Google Scholar]
  • G. V. Novikova, O. V. Mikhailova, S. P. Zaytsev, Development of microwave technology and installation for defrosting and heating of bovine colostrum, Bulletin of the Chuvash Agricultural Academy 3 (14), 90–94 (2020) [Google Scholar]
  • O. O. Drobakhin, P. I. Zabolotny, N. B. Goreyev, D. Yu. Saltykov, Sensors based on biconic microwave resonators for monitoring the parameters of dielectrics 19th Crimean Conf. Microwave and Telecommunication Technology (CriMiCo) (Sevastopol) 1418, 775–776 (2009) [Google Scholar]
  • R. K. Lorenzoni, M. O. Binelo, M. De F B Binelo, B. G. Ziganshin, Quasi-2D simulation of soya beans flow in mixed flow dryer, Journal of Stored Products Research 89, 101727, (2020) [CrossRef] [Google Scholar]
  • A. N. Didenko, Microwave Energy: Theory and Practice (Moscow: Nauka, 2003) [Google Scholar]
  • A. V. Strekalov, Yu. A. Strekalov Electromagnetic Fields and Waves (Moscow: RIOR: INFRA-M, 2014) [Google Scholar]
  • CST Studio Suite, retrieved from: https://lorentz.ru/cst-studio-suite/?yclid=7063004186007886553 [Google Scholar]
  • V. Gevorkyan, V. Kochemasov Volumetric dielectric resonators - main types, characteristics, manufacturers, Electronics 4 (00154), 62–76 (2016) [Google Scholar]
  • O. O. Drobakhin, Resonant properties of axially symmetric microwave resonators with conical elements, Radiophysics, Radio Astronomy 14 (14), 433–441 (2009) [Google Scholar]
  • I. A. Rogov, V. Ya. Adamenko, et al., Electrophysical, Optical and Acoustic Characteristics of Food Products (Moscow: Light and food industry, 1981) [Google Scholar]
  • Yu. N. Pchelnikov, Microwave Electronics. (Moscow: Radio and communication, 1981) [Google Scholar]
  • O. V. Drogaytseva, Increasing the level of heating uniformity of dielectric materials in microwave devices of waveguide and resonator types: PhD Dissertation (Saratov: SGTU, 2011) [Google Scholar]
  • V. A. Kolomeitsev, V. V. Komarov, Microwave Units with Uniform Volumetric Heating (Saratov: SGTU, 2006) [Google Scholar]
  • N. Dubkova, V. Kharkov, B. Ziganshin, Effect of Mode Amplitude on Power Consumption in Vibrating Mixer, 6th International Conference on Industrial Engineering (ICIE 2020): Lecture Notes in Mechanical Engineering (Sochi, Russia) pp 362–369 (Springer International Publishing, 2021) [Google Scholar]
  • V. N. Kopusov, On the issue of creating multi-magnetron equipment for modern technologies, Microwave Engineering and Telecommunication Technologies, 652–653 (Sevastopol: Weber, 2001) [Google Scholar]
  • D. L. Rakhmankulov, S. Yu. Shavshukova, I. N. Vikharev, Features of microwave installations for heating, Bashkir Chemical Journal 15 (1), 57–61 (2008) [Google Scholar]
  • A. E. Semenov, Microwave heating devices of the resonator type with an adjustable supply of electromagnetic power: PhD Dissertation (Saratov: SGTU, 2008) [Google Scholar]
  • A.V. Tsygankov, Electrotechnological microwave installations for uniform heating of dielectric materials on waveguides of complex sections: PhD Dissertation (Saratov: SGTU, 2003) [Google Scholar]
  • O. V. Mikhailova, Fundamentals of Patent Science and Scientific and Technical Developments for Implementation of Microwave Technology in the Processing of Agricultural Raw Materials (Knyaginino: NGIEU, 2021) [Google Scholar]
  • G. Tushar, Z. Huacheng, K. Ashim, H. Kama Microwave drying of spheres: Coupled electromagnetics-multiphase transport modeling with experimentation. PartII: Model validation and simulation results, Food Bioprod. Process 326, 96, (2015) [Google Scholar]
  • L. Donglei, T. Juming, D. Patrick, L. Frank, T. Zhongwei, Analysis of electric field distribution within a microwave assisted thermal sterilization (MATS) system by computer simulation, J. Food Eng. 188, 87, (2016) doi: 10.1016/j.jfoodeng.2016.05.009 [CrossRef] [Google Scholar]
  • S. Tianyi, Z. Zhijun, H. Jingxue, Z. Shiwei, W. Xiaowei, Z. Wenqing, Sensitivity analysis of intermittent microwave convective drying based on multiphase porous media models, Int. J. Therm. Sci. 153, 106344, (2020) doi: 10.1016/j.ijthermalsci.2020.106344 [CrossRef] [Google Scholar]
  • L. A. Campañone, N. E. Zaritzky, Mathematical analysis of microwave heating process, J. Food Eng. 69, 359, (2005) doi: 10.1016/j.jfoodeng.2004.08.027 [CrossRef] [Google Scholar]
  • S. J. Guido, D. V. Martin, I. S. Andrzej, D. S. Georgios, On the effect of resonant microwave fields on temperature distribution in time and space. Int. J. Heat Mass Transf. 55 (13), 3800, (2012) doi:10.1016/j.ijheatmasstransfer.2012.02.065 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.