Open Access
Issue |
BIO Web Conf.
Volume 56, 2023
43rd World Congress of Vine and Wine
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 10 | |
Section | Viticulture | |
DOI | https://doi.org/10.1051/bioconf/20235601003 | |
Published online | 24 February 2023 |
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; Balzer, C.; Bennett, E.M.; Carpenter, S.R.; Hill, J.; Monfreda, C.; Polasky, S.; Rockstrom, J.; Sheehan, J.; Siebert, S.; Tilman, D.; Zaks, D.P.M. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342 [CrossRef] [PubMed] [Google Scholar]
- Muneret, L.; Mitchell, N.; Seufert, V.; Aviron, S.; Djoudi, E.A.; Pétillon, J.; Plantegenest, M.; Thiéry, D.; Rusch, A. Evidence that Organic Farming Promotes Pest Control. Nature Sustainability, 2018, 1, 361–368 [CrossRef] [Google Scholar]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J. B.; Aubertot, J.-N. Thirteen Decades of Antimicrobial Copper Compounds Applied in Agriculture. A Review. Agronomy for Sustainable Development 2018, 38, 28–47 [CrossRef] [Google Scholar]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in Plant Protection: Current Situation and Prospects. Phytopathologia Mediterranea 2018, 57, 201–236 [Google Scholar]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; Silvério da Silva, S. Copper and Copper Nanoparticles: Role in Management of Insect-pests and Pathogenic Microbes. Nanotechnol Rev 2018, 7, 303–315 [CrossRef] [Google Scholar]
- Borkow, G.; Gabbay, J. Copper as a Biocidal Tool. Current Medicinal chemistry. 2005, 12, 2163–2175 [CrossRef] [Google Scholar]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper Environmental Toxicology, Recent Advances, and Future Outlook: a Review. Environ Sci Pollut Res 2019, 26, 18003–18016 [CrossRef] [PubMed] [Google Scholar]
- Altimira, F.; Yáñez, C.; Bravo, G.; González, M.; Rojas, L.A.; Seeger, M. Characterization of Copper-resistant Bacteria and Bacterial Communities from Copper-polluted Agricultural Soils of Central Chile. BMC Microbiology 2012, 12, 193–205 [CrossRef] [PubMed] [Google Scholar]
- Kunito, T.; Saeki, K.; Nagaoka, K.; Oyaizu, H.; Matsumoto, S. Characterization of Copper-resistant Bacterial Community in Rhizosphere of Highly Copper-contaminated Soil. European Journal of Soil Biology 2001, 37, 95–102 [CrossRef] [Google Scholar]
- Hu, H.-W.; Wang, J.-T.; Li, J.; Li, J.-J.; Ma, Y.-B.; Chen, D.; He, J.-J. Field-based Evidence for Copper Contamination Induced Changes of Antibiotic Resistance in Agricultural Soils. Environ Microbiol. 2016, 11, 3896–3909 [CrossRef] [PubMed] [Google Scholar]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper Environmental Toxicology, Recent Advances, and Future Outlook: a Review. Environmental Science and Pollution Research 2019, 26, 18003–18016 [CrossRef] [PubMed] [Google Scholar]
- Fuller, R.J.; Norton, L.R.; Feber, R.E.; Johnson, P.J.; Chamberlain, D.E.; Joys, A.C.; Mathews, F.; Stuart, R.C.; Townsend, M.C.; Manley, W.J.; Wolfe, M.S.; Macdonald, D.W.; Firbank, L.G. Benefits of Organic Farming to Biodiversity Vary Among Taxa. Biology Letters 2005, 1, 431–434 [CrossRef] [PubMed] [Google Scholar]
- Kabir, M.; Iqbal, M.Z.; Shafiq, M.; Farooqi, Z.R. Effects of Lead on Seedling growth of Thespesia opulnea L. Advances in Environmental Biology, 2009, 3, 184–190 [Google Scholar]
- Thomas, F.; Malick, C.; Endreszl, E.C.; Davies, K.S. Distinct Responses to Copper Stress in the Halophyte, Mesembryan-Themum Crystallium. Physiol. Plant. 1998, 102, 360–368 [CrossRef] [Google Scholar]
- Pichhode, M.; Kumar Nikhil, K. Effect of Copper Mining Dust on the Soil and Vegetation in India: A Critical Review. International Journal of Modern Sciences and Engineering Technology 2015, 2, 73–76 [Google Scholar]
- Demirevska-Kepova, K.; Simova-Stoilova, L.; Stoyanova, Z.; Holzer, R.; Feller, U. Biochemical Changes in Barley Plants After Excessive Supply of Copper and Manganese. Environ Exp Bot 2004, 52, 253–266 [CrossRef] [Google Scholar]
- Katare, J.; Pichhode, M.; Nikhil, K. Effect of Different Mining Dust on the Vegetation of District Balaghat, M.P. - A Critical Review. International Journal of Science and Research 2015, 4, 603–607 [Google Scholar]
- Katare, J.; Pichhode, M.; Nikhil, K. Growth of Terminalia bellirica on the Malanjkhand Copper Mine Overburden Dump Spoil Material. International Journal of Research 2015, 3, 14–24 [Google Scholar]
- Lewis, S.; Donkin, M.E.; Depledge, M.H. Hsp 70 Expression in Enteromorpha intestinalis (Chlorophyta) Exposed to Environmental Stressors. Aqua Toxicol 2001, 51, 277–291 [CrossRef] [Google Scholar]
- Stadtman, E.R.; Oliver, C.N. Metal Catalyzed Oxidation of Proteins. Physiological Consequences. J Biol Chem 1991, 266, 2005–2008 [Google Scholar]
- Pichhode, M.; Nikhil, K. Effect of Copper Dust on Photosynthesis Pigments Concentrations in Plants Species. International Journal of Engineering Research and Management 2015, 02, 63–66 [Google Scholar]
- Hegedus, A.; Erdei, S.; Horvath, G. Comparative Studies of H2O2 Detoxifying Enzymes in Green and Greening Barley Seedings Under Cadmium Stress. Plant Sci 2001, 160, 1085–1093 [CrossRef] [PubMed] [Google Scholar]
- Sheldon, A.R.; Menzies, N.W. The Effect of Copper Toxicity on the Growth and Root Morphology of Rhodes Grass (Chloris gayana Knuth.) in Resin Buffered Solution Culture. Plant and Soil 2005, 278, 341–349 [CrossRef] [Google Scholar]
- Pichhode, M.; Nikhil, K. Effect of Copper Dust on Photosynthesis Pigments Concentrations in Plants Species. International Journal of Engineering Research and Management 2015, 02, 63–66 [Google Scholar]
- Kjær, C.; Elmegaard, N. Effects of Copper Sulfate on Black Bindweed Polygonum Convolvulus L. Ecotoxi cology and Environmental Safety 1996, 33, 110–117 [CrossRef] [Google Scholar]
- Cook, C. M.; Kostidou, A.; Vardaka, E.; Lanaras, T. Effects of Copper on the Growth, Photosynthesis and Nutrient Concentrations of Phaseolus Plants. Photosynthetica 1997, 34, 179–193 [CrossRef] [Google Scholar]
- Katare, J.; Pichhode, M.; Nikhil, K. Growth of Terminalia bellirica on the Malanjkhand Copper Mine Overburden Dump Spoil Material. International Journal of Research 2015, 3, 14–24 [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century Nature Plants 2016, 2, 1-8 [Google Scholar]
- European Commission, 2002. Commission regulation (EC) No. 473/2002. Off. J. Eur. Comm. L75, 21e24 [Google Scholar]
- Commission Implementing Regulation (EU) (2018/1981 of 13 December 2018) [Google Scholar]
- La Torre, A.; Righi, L.; Iovino, V.; Battaglia, V. Evaluation of Copper Alternative Products to Control Grape Downy Mildew in Organic Farming. J Plant Pathol 2019, 101, 1005–1012 [CrossRef] [Google Scholar]
- Dagostin, S.; Schärer, H.J.; Pertot, I.; Tamm, L. Are There Alternatives to Copper for Controlling Grapevine Downy Mildew in Organic Viticulture? Crop Prot. 2011, 30, 776–788 [CrossRef] [Google Scholar]
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C.; Alcázar Marín, É.; Morell Pérez, Á.; Pertot, I.; Rasmussen, A.; Steinshamn, H.; Vetemaa, A.; Willer, H.; Herforth-Rahmé, J. Use of Copper-Based Fungicides in Organic Agriculture in Twelve European Countries. Agronomy 2022, 12, 673–694 [CrossRef] [Google Scholar]
- Battiston, E.; Antoniello, L.; Di Marco, S.; Fontaine, F.; Mugnai, L. Innovative Delivery of Cu (II) Ions by a Nanostructured Hydroxyapatite: Potential Application in Planta to Enhance the Sustainable Control of Plasmopara viticola. Phytopathology 2019, 109, 748–759 [CrossRef] [PubMed] [Google Scholar]
- Cabús, A.; Pellini, M.; Zanzotti, R.; Devigili, L.; Maines, R.; Giovannini, O.; Mattedi, L.; Mescalchin, E. Efficacy of Reduced Copper Dosages Against Plasmopara viticola in Organic Agriculture. Crop Protection 2017, 96, 103–108 [CrossRef] [Google Scholar]
- Napoli, M.; Cecchi, S.; Grassi, C.; Baldi, A.; Zanchi C.A.; Orlandini, S. Phytoextraction of Copper from a Contaminated Soil Using Arable and Vegetable Crops. Chemosphere 2019, 219, 122–129 [CrossRef] [PubMed] [Google Scholar]
- Dagostin, S.; Hans-Jakob Schärer, H.-J.; Pertot, I.; Tamm, L. Are There Alternatives to Copper for Controlling Grapevine Downy Mildew in Organic Viticulture? Crop Protection 2011, 30, 776-788 [CrossRef] [Google Scholar]
- Miernicki, M.; Hofmann, T.; Eisenberger, I.; von der Kammer, F.; Praetorius, A. Legal and Practical Challenges in Classifying Nanomaterials According to Regulatory Definitions. Nat. Nanotechnol. 2019, 14, 208–216 [CrossRef] [PubMed] [Google Scholar]
- Bleeker, E.A.J.; de Jong, W.H.; Geertsma, R.E.; Groenewold, M.; Heugens, E.H.W.; Koers-Jacquemijns, M.; van de Meent, D.; Popma, J.R.; Rietveld, A.G.; Wijnhoven, S.W.P.; Cassee, F.R.; Oomen, A.G. Considerations on the EU Definition of a Nanomaterial: Science to Support Policy Making. Regulatory Toxicology and Pharmacology 2013, 65, 119–125 [CrossRef] [PubMed] [Google Scholar]
- DeRosa, M.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in Fertilizers. Nature Nanotech 2010, 5, 91 [CrossRef] [PubMed] [Google Scholar]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Nudrat, A. A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Science 2019, 289, 110270–110281 [CrossRef] [PubMed] [Google Scholar]
- Cervantes-Avilés, P.; Huang, X.; Keller, A.A. Dissolution and Aggregation of Metal Oxide Nanoparticles in Root Exudates and Soil Leachate: Implications for Nanoagrochemical Application. Environ. Sci. Technol. 2021, 55, 13443–13451 [CrossRef] [PubMed] [Google Scholar]
- Avellan, A.; Yun, J.; Morais, B.P.; Clement, E.T.; Rodrigues, S.M.; Lowry, G.V. Critical Review: Role of Inorganic Nanoparticle Properties on Their Foliar Uptake and in Planta Translocation. Environ. Sci. Technol. 2021, 55, 13417–13431 [CrossRef] [PubMed] [Google Scholar]
- Shang, H.; Ma, C.; Li, C.; Zhao, J.; Elmer, W.; White, J.C.; Xing, B. Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (Lactuca sativa) Infected with Fusarium oxysporum f. sp. lactucae. Environ. Sci. Technol. 2021, 55, 13432–13442 [CrossRef] [PubMed] [Google Scholar]
- Baddar, Z.E.; Unrine, J.M. Effects of Soil pH and Coatings on the Efficacy of Polymer Coated ZnO Nanoparticulate Fertilizers in Wheat (Triticum aestivum). Environ. Sci. Technol. 2021, 55, 13532–13540 [CrossRef] [PubMed] [Google Scholar]
- Shen, M.; Liu, W.; Zeb, A.; Lian, J.; Wu, J.; Lin, M. Bioaccumulation and Phytotoxicity of ZnO Nanoparticles in Soil-grown Brassica chinensis L. and Potential Risks. Journal of Environmental Management 2022, 306, 114454–114462 [Google Scholar]
- Read, T.L.; Doolette, C.L.; Howell, N.R.; Kopittke, P.M.; Cresswell, T.; Lombi, E. Zinc Accumulates in the Nodes of Wheat Following the Foliar Application of 65Zn Oxide Nano- and Microparticles. Environ. Sci. Technol. 2021, 55, 13523–13531 [CrossRef] [PubMed] [Google Scholar]
- Gao, X.; Kundu, A.; Bueno, V.; Rahim, A.A.; Ghoshal, S. Uptake and Translocation of Mesoporous SiO2 Coated ZnO Nanoparticles to Solanum lycopersicum Following Foliar Application. Environ. Sci. Technol. 2021, 55, 13551–13560 [CrossRef] [PubMed] [Google Scholar]
- Turon, P.; Del Valle, L.J.; Alemán, C.; Puiggalí, J. Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. Appl. Sci. 2017, 7, 60–87 [CrossRef] [Google Scholar]
- Sanchez, C.; Arribart, H.; Giraud Guille, M.M. Nat. Mater. 2005, 4, 277–288 [CrossRef] [PubMed] [Google Scholar]
- Li, Z.; Huang, J. Effects of Nanoparticle Hydroxyapatite on Growth and Antioxidant System in Pakchoi (Brassica chinensis L.) from Cadmium-Contaminated Soil. J. Nanomater. 2014 (2014), 1-7 [Google Scholar]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot E. Influence of Hydroxyapatite Nanoparticles on Germination and Plant Metabolism of Tomato (Solanum lycopersicum L.): Preliminary Evidence. Agronomy 2019, 9, 161–178 [CrossRef] [Google Scholar]
- Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U.A.; Arachchige, D.M.B.; Kumarasinghe, A.R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G.A.J. Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen ACS Nano 2017, 11, 1214−1221 [Google Scholar]
- Maghsoodi, M.R.; Najafi, N.; Reyhanitabar, A.; Oustan, S. Hydroxyapatite Nanorods, Hydrochar, Biochar, and Zeolite for Controlled Release Urea Fertilizers. Geoderma 2020, 379, 114644-114659. [CrossRef] [Google Scholar]
- Shanmugam, S.; Gopal, B. Copper Substituted Hydroxyapatite and Fluorapatite: Synthesis, Characterization and Antimicrobial Properties. Ceramics International 2014, 40, 15655–15662 [CrossRef] [Google Scholar]
- Stanić, V.; Dimitrijević, S.; Antić-Stanković, J.; Mitrić, M.; Jokić, B.; Plećaš, I.B.; Raičević, S. Synthesis, Characterization and Antimicrobial Activity of Copper and Zinc-doped Hydroxyapatite Nanopowders. Applied Surface Science 2010, 256, 6083–6089 [CrossRef] [Google Scholar]
- Wintz, H.; Fox, T.; Vulpe, C. Responses of Plants to Iron, Zinc and Copper Deficiencies. Biochem. Soc. Trans. 2002, 30, 766–768 [CrossRef] [PubMed] [Google Scholar]
- Reeves, R.D.; Baker, A.J.M. Metal-accumulating plants. In Phytoremediation of toxic metals: using plants to clean up the environment. Wiley 2000, 193–229. ISBN 9780471192541 [Google Scholar]
- Monni, S.; Salemma, M.; Millar, N. The Tolerance of Empetrum nigrum to Copper and Nickel. Environ. Pollut. 2000, 109, 221–229 [CrossRef] [Google Scholar]
- Fertilized Compositions Based on a Substituted Calcium Phosphate and/or Calcium Carbonate Compound. Roveri, N.; Cecchini, A.; Morselli, S.; Lelli, M.; Mercuri, R. European Patent EP WO2016189521A3 [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers, Journal American Chemical Society 1938, 60, 309-319 [CrossRef] [Google Scholar]
- Nara, S.; Komiya, T. Starch/Stärke 1983, 35, 407-411 [CrossRef] [Google Scholar]
- Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–98 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.