Open Access
Issue
BIO Web Conf.
Volume 57, 2023
International Scientific and Practical Conference “Innovations, Technological Solutions and Management in Modern Biotechnology and Biomedicine” (ITSM-2022)
Article Number 05003
Number of page(s) 7
Section Food Industry
DOI https://doi.org/10.1051/bioconf/20235705003
Published online 13 January 2023
  • F. A. Rodríguez Garay, J. H. Camacho Tamayo, Y. Rubiano Sanabria, Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café, Corpoica Cienc Tecnol Agropecuaria, Mosquera (Colombia), 17(2), 237-254 (2016). [CrossRef] [Google Scholar]
  • E. Cisneros Zayas, F. González Robaina, R. Martínez Varona, T. López Seijas, Á. R. Rey García, Respuesta productiva del cafeto al manejo del riego, Funcion agua-rendimiento, Revista Ciencias Técnicas Agropecuarias, 24(4), 5-11 (2015). [Google Scholar]
  • M. A. Flores Chávez, J. F. Rodríguez Castro, Diseño e implementación de un sistema de riego por goteo automatizado para el cultivo del café usando tecnología de microcontrolador y estableciendo un sistema de control inalámbrico en la comunidad de Totogalpa [Facultad de Electrotecnia y Computación]. Universidad Nacional de Ingenierí (2018). [Google Scholar]
  • H. Quispe Tapara, Diseño de un sistema de riego automatizado por aspersión para viveros de café utilizando la tecnología arduino en la empresa viveros ortíz – pasco; 2018. Universidad Católica los Ángeles de Chimbote (2018). [Google Scholar]
  • A. Abad Alameda, Diseño e implementación de un sistema de seguimiento de parámetros ambientales en plantaciones de café [Master]. Universidad de Piura (2016). [Google Scholar]
  • E. M. Torres Caballero, A. M. Reyes Duke, Implementation of Artificial Neural Networks Using NVIDIA Digits and OpenCV for Coffee Rust Detection, 2020 5th International Conference on Control and Robotics Engineering (ICCRE), 246-251 (2020). [Google Scholar]
  • Jose Luis Ordoñez Avila, Hector Fernando Jimenez, and Alberto Max Carrasco, Spiral Cycle Implementation for Designing an All-Terrain Teleoperated Robot in Honduras, 2020 6th International Conference on Robotics and Artificial Intelligence (ICRAI 2020). Association for Computing Machinery, New York, NY, USA, 253-257 (2020). [Google Scholar]
  • M. Serrano Fuentes, N. A. Lizardo Zelaya, J. L. Ordoñez Ávila, Coffee Fruit Recognition Using Artificial Vision and neural NETWORKS, 2020 5th International Conference on Control and Robotics Engineering (ICCRE), 224-228 (2020). [Google Scholar]
  • T. Thepudom, N. Sricharoenchai, T. Kerdcharoen, Classification of instant coffee odors by electronic nose toward quality control of production, 2013 10th International Conference on Electrical Engineering/ Electronics,Computer, Telecommunications and Information Technology, 1-4 (2013). [Google Scholar]
  • Y. Hendrawan, S. Widyaningtyas, S. Sucipto, Computer vision for purity, phenol, and pH detection of Luwak Coffee green bean, TELKOMNIKA, 17(6), 3073-3085 (2019). [CrossRef] [Google Scholar]
  • J. Rodrigo Santos, M. Lopo, A. O. S. S. Rangel, J. Almeida Lopes, Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting, Food Control, 60, 408-415 (2016). [CrossRef] [Google Scholar]
  • R. Chokkareddy, G. G. Redhi, T. Karthick, A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples, Heliyon, 5(3), e01457 (2019). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.