Open Access
Issue
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 01004
Number of page(s) 4
Section Biotechnology and Cell Structure Analysis
DOI https://doi.org/10.1051/bioconf/20235901004
Published online 08 May 2023
  • Scorzoni, L.; De Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; De Melo, W.C.M.A.; De Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol. 2017, 8, 36. [CrossRef] [Google Scholar]
  • Fong J.C., Karplus K., Schoolnik G.K., Yildiz F.H. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J bacteriol. 2006;188:1049–1059. [CrossRef] [PubMed] [Google Scholar]
  • Kaplan J.B., Ragunath C., Ramasubbu N., Fine D.H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J bacteriol. 2003;185:4693–4698. [CrossRef] [PubMed] [Google Scholar]
  • Hunt D.E., Gevers D., Vahora N.M., Polz M.F. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 2008;74:44–51. [CrossRef] [PubMed] [Google Scholar]
  • Kirn T.J., Jude B.A., Taylor R.K. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438:863–866. [Google Scholar]
  • Stauder M., Huq A., Pezzati E., Grim C.J., Ramoino P., Pane L., Colwell R.R., Pruzzo C., Vezzulli L. Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae’s survival in the aquatic environment. Environ Microbiol Rep. 2012;4:439–445. [CrossRef] [Google Scholar]
  • Bhowmick R., Ghosal A., Das B., Koley H., Saha D.R., Ganguly S., Nandy R.K., Bhadra R.K., Chatterjee N.S. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin. Infect Immun. 2008;76:4968–4977. [CrossRef] [PubMed] [Google Scholar]
  • Chambers J.R., Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol. 2013 Jan;21(1):39–49. doi: 10.1016/j.tim.2012.10.008. Epub 2012 Nov 20. PMID: 23178000; PMCID: PMC3752386. [Google Scholar]
  • Turan, N.B.; Chormey, D.S.; Büyükpinar, Q.; Engin, G.O.; Bakirdere, S. Quorum sensing: Little talks for an effective bacterial coordination. TrAC Trends Anal. Chem. 2017, 91, 1–11. [Google Scholar]
  • Sturme, M.H.J.; Kleerebezem, M.; Nakayama, J.; Akkermas, A.D.L.; Vaugha, E.E.; de Vos, W.M. Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie Leeuwenhoek 2002, 81, 233–243. [CrossRef] [Google Scholar]
  • Deep, A.; Chaudhary, U.; Gupta, V. Quorum sensing and bacterial pathogenicity: From molecules to disease. J. Lab. Physicians 2011, 3, 4–11. [Google Scholar]
  • Fulaz S., Vitale S., Quinn L., Casey E. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019 Nov;27(11):915–926. doi: 10.1016/j.tim.2019.07.004. Epub 2019 Aug 13. PMID: 31420126. [Google Scholar]
  • Ruiz-Ruigomez, M.; Badiola, J.; Schmidt-Malan, S.M.; Greenwood-Quaintance, K.; Karau, M.J.; Brinkman, C.L.; Mandrekar, J.N.; Patel, R. Direct electrical current reduces bacterial and yeast biofilm formation. Int. J. Bacteriol. 2016, 2016, 9727810. [Google Scholar]
  • Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.