Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 03004
Number of page(s) 6
Section Clinical Trials and Medical Device Monitoring
Published online 08 May 2023
  • Ji G., Xuan W., Zhuang Y., Ye L., Zhu S., Ye W., et al. 2021 Learning association for single-cell transcriptomics by integrating profiling of gene expression and alternative polyadenylation BioRxiv. 2021.01.04.425335 [Google Scholar]
  • Wang B., Mezlini A. M., Demir F., Fiume M., Tu Z., Brudno M., et al. 2014 Similarity network fusion for aggregating data types on a genomic scale Nature Methods. 11(3) 333–337 [Google Scholar]
  • Li G-W, Nan F., Yuan G-H, Liu C-X, Liu X., Chen L. L., et al. 2021 SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3 ′ tag-based RNA-seq of single cells Genome Biology. 22(1) 1–24 [Google Scholar]
  • Wu X., Liu T., Ye C., Ye W., Ji G. 2021 scAPAtrap: identification and quantification of alternative polyadenylation sites from single-cell RNA-seq data Briefings in Bioinformatics. 22(4) bbaa273 [Google Scholar]
  • Collado-Torres L., Nellore A., Frazee A. C., Wilks C., Love M. I., Langmead B., et al. 2017 Flexible expressed region analysis for RNA-seq with derfinder Nucleic Acids Research. 45(2) e9–e. [Google Scholar]
  • Freytag S., Tian L., Lönnstedt I., Ng M., Bahlo M. 2018 Comparison of clustering tools in R for mediumsized 10x Genomics single-cell RNA-sequencing data F1000Research. 7 [Google Scholar]
  • Hao Y., Hao S., Andersen-Nissen E., Mauck W. M.III, Zheng S., Butler A., et al. 2021 Integrated analysis of multimodal single-cell data Cell. 184(13) 3573–3587. e29 [Google Scholar]
  • Zhou D., Burges C. J. 2007 Spectral clustering and transductive learning with multiple views Proceedings of the 24th international conference on Machine learning. 1159–1166 [Google Scholar]
  • Kumar A., Rai P., Daume H. 2011 Co-regularized multi-view spectral clustering Advances in Neural Information Processing Systems. 24 [Google Scholar]
  • Huang H-C, Chuang Y-Y, Chen C-S 2012 Affinity aggregation for spectral clustering 2012 IEEE Conference on computer vision and pattern recognition. 7–80 [Google Scholar]
  • Xia R., Pan Y., Du L., Yin J. 2014 Robust multi-view spectral clustering via low-rank and sparse decomposition Proceedings of the AAAI conference on artificial intelligence. 28(1) [Google Scholar]
  • Zhan K., Nie F., Wang J., Yang Y. 2018 Multiview consensus graph clustering IEEE Transactions on Image Processing. 28(3) 1261–1270 [Google Scholar]
  • Nie F., Tian L., Li X. 2018 Multiview clustering via adaptively weighted procrustes Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2022–2030. [Google Scholar]
  • Zong L., Zhang X., Liu X., Yu H. 2018 Weighted multi-view spectral clustering based on spectral perturbation Proceedings of the AAAI conference on artificial intelligence. 32(1) [Google Scholar]
  • Leng D., Zheng L., Wen Y., Zhang Y., Wu L., Wang J., et al. 2022 A benchmark study of deep learning-based multi-omics data fusion methods for cancer Genome Biology. 23(1) 1–32 [Google Scholar]
  • Wang T., Shao W., Huang Z., Tang H., Zhang J., Ding Z., et al. 2021 MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification Nature Communications. 12(1) 1–13 [Google Scholar]
  • Wang L., Ding Z., Tao Z., Liu Y., Fu Y. 2019 Generative multi-view human action recognition Proceedings of the IEEE/CVF International Conference on Computer Vision. 6212–6221 [Google Scholar]
  • Steinley D. 2004 Properties of the hubert-arable adjusted rand index Psychological Methods. 9(3) 386 [CrossRef] [PubMed] [Google Scholar]
  • Guo M., Wang H., Potter S. S., Whitsett J. A., Xu Y. 2015 SINCERA: a pipeline for single-cell RNA-Seq profiling analysis PLoS Computational Biology. 11(11) e1004575 [Google Scholar]
  • Xu C., Su Z. 2015 Identification of cell types from single-cell transcriptomes using a novel clustering method Bioinformatics. 31(12) 1974–1980 [Google Scholar]
  • Langfelder P., Zhang B., Horvath S. 2008 Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R Bioinformatics. 24(5) 719–720 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.