Open Access
BIO Web Conf.
Volume 59, 2023
2023 5th International Conference on Biotechnology and Biomedicine (ICBB 2023)
Article Number 03003
Number of page(s) 6
Section Clinical Trials and Medical Device Monitoring
Published online 08 May 2023
  • G. A. Roth et al., "Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015," (in en), Journal of the American College of Cardiology, vol. 70, no. 1, pp. 1–25, 2017/07/04/ 2017. [CrossRef] [Google Scholar]
  • M. Isomi, T. Sadahiro, and M. Ieda, "Progress and Challenge of Cardiac Regeneration to Treat Heart Failure," (in en), Journal of Cardiology, vol. 73, no. 2, pp. 97–101, 2019/02/01/ 2019. [CrossRef] [Google Scholar]
  • J. Stehlik et al., "The Registry of the International Society for Heart and Lung Transplantation: Twentyseventh official adult heart transplant report—2010," (in en), The Journal of Heart and Lung Transplantation, vol. 29, no. 10, pp. 1089–1103, 2010/10/01/ 2010. [CrossRef] [Google Scholar]
  • R. Gong, Z. Jiang, N. Zagidullin, T. Liu, and B. Cai, "Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration," (in en), Sig Transduct Target Ther, vol. 6, no. 1, pp. 1–11, 2021/01/27/ 2021. [CrossRef] [Google Scholar]
  • S. M. Meilhac, F. Lescroart, C. Blanpain, and M. E. Buckingham, "Cardiac Cell Lineages that Form the Heart," (in en), Cold Spring Harb Perspect Med, vol. 4, no. 9, p. a013888, 2014/09// 2014. [CrossRef] [Google Scholar]
  • F. Lescroart and S. M. Meilhac, "Cell Lineages, Growth and Repair of the Mouse Heart," in Mouse Development: From Oocyte to Stem Cells, J. Z. Kubiak, Ed. (Results and Problems in Cell Differentiation. Berlin, Heidelberg: Springer, 2012, pp. 263–289. [CrossRef] [PubMed] [Google Scholar]
  • O. Manfra, M. Frisk, and W. E. Louch, "Regulation of Cardiomyocyte T-Tubular Structure: Opportunities for Therapy," (in en), Curr Heart Fail Rep, vol. 14, no. 3, pp. 167–178, 2017/06/01/ 2017. [CrossRef] [PubMed] [Google Scholar]
  • D. Später, E. M. Hansson, L. Zangi, and K. R. Chien, "How to make a cardiomyocyte," (in en), Development, vol. 141, no. 23, pp. 4418–4431, 2014/12/01/ 2014. [CrossRef] [PubMed] [Google Scholar]
  • J. Johnson, S. Mohsin, and S. R. Houser, "Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart," (in en), Int J Mol Sci, vol. 22, no. 15, p. 7764, 2021/07/21/ 2021. [CrossRef] [Google Scholar]
  • L. Gamba, M. Harrison, and C.-L. Lien, "Cardiac regeneration in model organisms," (in en), Curr Treat Options Cardiovasc Med, vol. 16, no. 3, p. 288, 2014/03// 2014. [CrossRef] [PubMed] [Google Scholar]
  • N. Witman, B. Murtuza, B. Davis, A. Arner, and J. I. Morrison, "Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury," (in en), Dev Biol, vol. 354, no. 1, pp. 67–76, 2011/06/01/ 2011. [CrossRef] [Google Scholar]
  • K. Rayani et al., "Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics," (in en), Prog Biophys Mol Biol, vol. 138, pp. 69–90, 2018/10// 2018. [CrossRef] [Google Scholar]
  • C. Jopling, E. Sleep, M. Raya, M. Martí, A. Raya, and J. C. I. Belmonte, "Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation," (in en), Nature, vol. 464, no. 7288, pp. 606–609, 2010/03// 2010. [CrossRef] [PubMed] [Google Scholar]
  • E. R. Porrello et al., "Transient regenerative potential of the neonatal mouse heart," (in en), Science (New York, N.Y.), vol. 331, no. 6020, pp. 1078–1080, 2011/02/25/ 2011. [CrossRef] [PubMed] [Google Scholar]
  • N. T. Lam and H. A. Sadek, "Neonatal Heart Regeneration: Comprehensive Literature Review," (in en), Circulation, vol. 138, no. 4, pp. 412–423, 2018/07/24/ 2018. [CrossRef] [PubMed] [Google Scholar]
  • B. N. Puente et al., "The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response," (in en), Cell, vol. 157, no. 3, pp. 565–579, 2014/04/24/ 2014. [CrossRef] [Google Scholar]
  • Y. Nakada et al., "Hypoxia induces heart regeneration in adult mice," (in en), Nature, vol. 541, no. 7636, pp. 222–227, 2017/01/12/ 2017. [CrossRef] [PubMed] [Google Scholar]
  • T. Doenst, T. D. Nguyen, and E. D. Abel, "Cardiac metabolism in heart failure: implications beyond ATP production," (in en), Circ Res, vol. 113, no. 6, pp. 709–724, 2013/08/30/ 2013. [CrossRef] [PubMed] [Google Scholar]
  • R. Fukuda et al., "Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish," (in en), EMBO reports, vol. 21, no. 8, p. e49752, 2020/08/05/ 2020. [CrossRef] [PubMed] [Google Scholar]
  • A. C. Cardoso et al., "Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression," (in en), Nat Metab, vol. 2, no. 2, pp. 167–178, 2020/02// 2020. [CrossRef] [Google Scholar]
  • A. Kudo, "Introductory review: periostin-gene and protein structure," (in en), Cell Mol Life Sci, vol. 74, no. 23, pp. 4259–4268, 2017/12// 2017. [CrossRef] [PubMed] [Google Scholar]
  • B. Kühn et al., "Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair," (in en), Nat Med, vol. 13, no. 8, pp. 962–969, 2007/08// 2007. [CrossRef] [PubMed] [Google Scholar]
  • J. E. Hudson and E. R. Porrello, "Periostin paves the way for neonatal heart regeneration," (in en), Cardiovasc Res, vol. 113, no. 6, pp. 556–558, 2017/05/01/ 2017. [CrossRef] [PubMed] [Google Scholar]
  • V. F. M. Segers and R. T. Lee, "Protein Therapeutics for Cardiac Regeneration after Myocardial Infarction," (in en), J Cardiovasc Transl Res, vol. 3, no. 5, pp. 469–477, 2010/10// 2010. [CrossRef] [PubMed] [Google Scholar]
  • A. Kumar and J. P. Brockes, "Nerve dependence in tissue, organ, and appendage regeneration," (in en), Trends in Neurosciences, vol. 35, no. 11, pp. 691–699, 2012/11/01/ 2012. [CrossRef] [Google Scholar]
  • A. I. Mahmoud et al., "Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration," (in eng), Dev Cell, vol. 34, no. 4, pp. 387–399, Aug 24 2015. [CrossRef] [Google Scholar]
  • C.-L. Lien, M. Schebesta, S. Makino, G. J. Weber, and M. T. Keating, "Gene expression analysis of zebrafish heart regeneration," (in en), PLoS Biol, vol. 4, no. 8, p. e260, 2006/08// 2006. [CrossRef] [Google Scholar]
  • A. B. Aurora et al., "Macrophages are required for neonatal heart regeneration," (in en), J Clin Invest, vol. 124, no. 3, pp. 1382–1392, 2014/03// 2014. [CrossRef] [PubMed] [Google Scholar]
  • C. Han et al., "Acute inflammation stimulates a regenerative response in the neonatal mouse heart," (in en), Cell Res, vol. 25, no. 10, pp. 1137–1151, 2015/10// 2015. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.