Open Access
Issue
BIO Web Conf.
Volume 60, 2023
2022 4th International Conference on Biotechnology and Food Science (BFS 2022)
Article Number 01011
Number of page(s) 6
Section Biochemical Application and Genetic Engineering
DOI https://doi.org/10.1051/bioconf/20236001011
Published online 11 May 2023
  • Bernareggi, D., Xie, Q., Prager, B., Yun, J., Cruz, L., & Pham, T. et al. (2022). CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nature Communications, 13(1). DOI: 10.1038/s41467-022-29469-0 [CrossRef] [PubMed] [Google Scholar]
  • Bian, S., Repic, M., Guo, Z., Kavirayani, A., Burkard, T., & Bagley, J. et al. (2018). Genetically engineered cerebral organoids model brain tumor formation. Nature Methods, 15(8), 631-639. DOI: 10.1038/s41592-018-0070-7 [CrossRef] [PubMed] [Google Scholar]
  • Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., & Malewicz, M. et al. (2017). Zincfinger proteins in health and disease. Cell Death Discovery, 3(1). DOI: 10.1038/cddiscovery.2017.71 [CrossRef] [PubMed] [Google Scholar]
  • Chen, F., Rosiene, J., Che, A., Becker, A., & LoTurco, J. (2015). Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and PiggyBac transposase lineage labeling. Development. DOI: 10.1242/dev.118836 [PubMed] [Google Scholar]
  • Choi BD Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, Larson RC, Scarfò I, Bailey SR, Gerhard GM, Frigault MJ, Leick MB, Schmidts A, Sagert JG, Curry WT, Carter BS, Maus MV. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019 Nov 14;7(1):304. doi: 10.1186/s40425019-0806-7. PMID: 31727131; PMCID: PMC6857271. [CrossRef] [PubMed] [Google Scholar]
  • Duan, S., Yuan, G., Liu, X., Ren, R., Li, J., & Zhang, W. et al. (2015). PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 6(1). DOI: 10.1038/ncomms10068 [CrossRef] [PubMed] [Google Scholar]
  • Ekstrand, A.J.; Sugawa, N.; James, C.D.; Collins, V.P. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the Nand/or C-terminal tails. Proc. Natl. Acad. Sci. USA 1992, 89, 4309–4313. [CrossRef] [PubMed] [Google Scholar]
  • Fierro, J., DiPasquale, J., Perez, J., Chin, B., Chokpapone, Y., Tran, A. M.,... Dou, H. (2022). Dual-SGRNA CRISPR/cas9 knockout of Pd-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Scientific Reports, 12(1). doi:10.1038/s41598-022-06430-1 [CrossRef] [PubMed] [Google Scholar]
  • Gaudelli, N., Komor, A., Rees, H., Packer, M., Badran, A., Bryson, D., & Liu, D. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471. DOI: 10.1038/nature24644 [CrossRef] [PubMed] [Google Scholar]
  • Gilbert, L., Horlbeck, M., Adamson, B., Villalta, J., Chen, Y., & Whitehead, E. et al. (2014). GenomeScale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 159(3), 647-661. DOI: 10.1016/j.cell.2014.09.029 [CrossRef] [PubMed] [Google Scholar]
  • Grochans, S., Cybulska, A., Simińska, D., Korbecki, J., Kojder, K., Chlubek, D., & BaranowskaBosiacka, I. (2022). Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers, 14(10), 2412. DOI: 10.3390/cancers14102412 [CrossRef] [PubMed] [Google Scholar]
  • Hilton, I., D’Ippolito, A., Vockley, C., Thakore, P., Crawford, G., Reddy, T., & Gersbach, C. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 33(5), 510-517. DOI: 10.1038/nbt.3199 [CrossRef] [PubMed] [Google Scholar]
  • Jung, I. Y., Kim, Y. Y., Yu, H. S., Lee, M., Kim, S., & Lee, J. (2018). CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer research, 78(16), 4692–4703. https://doi.org/10.1158/0008-5472.CAN-18-0030 [CrossRef] [PubMed] [Google Scholar]
  • Koul D. (2008). PTEN signaling pathways in glioblastoma. Cancer biology & therapy, 7(9), 1321–1325. https://doi.org/10.4161/cbt.7.9.6954 [CrossRef] [PubMed] [Google Scholar]
  • Kolliopoulos, C., Ali, M., Castillejo-Lopez, C., Heldin, C., & Heldin, P. (2022). CD44 Depletion in Glioblastoma Cells Suppresses Growth and Stemness and Induces Senescence. Cancers, 14(15), 3747. DOI: 10.3390/cancers14153747 [CrossRef] [PubMed] [Google Scholar]
  • Komor, A., Kim, Y., Packer, M., Zuris, J., & Liu, D. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424. DOI: 10.1038/nature17946 [CrossRef] [PubMed] [Google Scholar]
  • Kwon, T., Ra, J., Lee, S., Baek, I., Khim, K., & Lee, E. et al. (2022). Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9. Proceedings Of the National Academy of Sciences, 119(9). DOI: 10.1073/pnas.2103532119 [Google Scholar]
  • Lancaster, M., & Knoblich, J. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194). DOI: 10.1126/science.1247125 [CrossRef] [PubMed] [Google Scholar]
  • Larson, R. C., Kann, M. C., Bailey, S. R., Haradhvala, N. J., Llopis, P. M., Bouffard, A. A., Scarfó, I., Leick, M. B., Grauwet, K., Berger, T. R., Stewart, K., Anekal, P. V., Jan, M., Joung, J., Schmidts, A., Ouspenskaia, T., Law, T., Regev, A., Getz, G., & Maus, M. V. (2022). CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature, 604(7906), 563–570. https://doi.org/10.1038/s41586-022-04585-5 [CrossRef] [PubMed] [Google Scholar]
  • Lei, Y., Zhang, X., Su, J., Jeong, M., Gundry, M., & Huang, Y. et al. (2017). Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nature Communications, 8(1). DOI: 10.1038/ncomms16026 [Google Scholar]
  • Linkous, A., Balamatsias, D., Snuderl, M., Edwards, L., Miyaguchi, K., & Milner, T. et al. (2019). Modeling Patient-Derived Glioblastoma with Cerebral Organoids. Cell Reports, 26(12), 32033211.e5. DOI: 10.1016/j.celrep.2019.02.063 [CrossRef] [PubMed] [Google Scholar]
  • Louis, D., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., & Cavenee, W. et al. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, 131(6), 803-820. DOI: 10.1007/s00401-016-1545-1 [CrossRef] [PubMed] [Google Scholar]
  • Lozada-Delgado, E. L., Grafals-Ruiz, N., & VivasMejía, P. E. (2017). RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life sciences, 188, 26–36. https://doi.org/10.1016/j.lfs.2017.08.027 [CrossRef] [PubMed] [Google Scholar]
  • Marchiq, I., Le Floch, R., Roux, D., Simon, M. P., & Pouyssegur, J. (2015). Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin. Cancer Research, 75(1), 171–180. https://doi.org/10.1158/0008-5472.CAN-14-2260 [CrossRef] [PubMed] [Google Scholar]
  • Mali, P., Yang, L., Esvelt, K., Aach, J., Guell, M., & DiCarlo, J. et al. (2013). RNA-Guided Human Genome Engineering via Cas9. Science, 339(6121), 823-826. DOI: 10.1126/science.1232033 [CrossRef] [PubMed] [Google Scholar]
  • Mojica, F., Diez-Villasenor, C., Garcia-Martinez, J., & Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal Of Molecular Evolution, 60(2), 174-182. DOI: 10.1007/s00239004-0046-3 [CrossRef] [PubMed] [Google Scholar]
  • Nakazawa, T., Natsume, A., Nishimura, F., Morimoto, T., Matsuda, R., Nakamura, M., Yamada, S., Nakagawa, I., Motoyama, Y., Park, Y. S., Tsujimura, T., Wakabayashi, T., & Nakase, H. (2020). Effect of CRISPR/Cas9-Mediated PD-1Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells, 9(4), 998. https://doi.org/10.3390/cells9040998 [CrossRef] [PubMed] [Google Scholar]
  • Oldrini, B., Curiel-García, Á., Marques, C., Matia, V., Uluçkan, Ö., & Graña-Castro, O. et al. (2018). Somatic genome editing with the RCAS-TVACRISPR-Cas9 system for precision tumor modeling. Nature Communications, 9(1). DOI: 10.1038/s41467-018-03731-w [CrossRef] [Google Scholar]
  • Ostrom Q Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C. Barnholtz-Sloan JJN-o: CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019; 21: v1–v100. [CrossRef] [PubMed] [Google Scholar]
  • Ousterout, D., & Gersbach, C. (2016). The Development of TALE Nucleases for Biotechnology. Talens, 27-42. DOI: 10.1007/978-14939-2932-0_3 [CrossRef] [PubMed] [Google Scholar]
  • Prolo, L., Li, A., Owen, S., Parker, J., Foshay, K., & Nitta, R. et al. (2019). Targeted genomic CRISPRCas9 screen identifies MAP4K4 as essential for glioblastoma invasion. Scientific Reports, 9(1). DOI: 10.1038/s41598-019-50160-w [CrossRef] [PubMed] [Google Scholar]
  • Purow, B. (2015). Molecular Pathways: Targeting Diacylglycerol Kinase Alpha in Cancer. Clinical Cancer Research, 21(22), 5008-5012. DOI: 10.1158/1078-0432.cc-15-0413 [CrossRef] [PubMed] [Google Scholar]
  • Tan, A., Ashley, D., López, G., Malinzak, M., Friedman, H., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70(4), 299-312. DOI: 10.3322/caac.21613 [CrossRef] [PubMed] [Google Scholar]
  • Tang, M., Xie, Q., Gimple, R., Zhong, Z., Tam, T., & Tian, J. et al. (2020). Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Research, 30(10), 833-853. DOI: 10.1038/s41422020-0338-1 [CrossRef] [PubMed] [Google Scholar]
  • Terns, M., & Terns, R. (2011). CRISPR-based adaptive immune systems. Current Opinion In Microbiology, 14(3), 321-327. DOI: 10.1016/j.mib.2011.03.005 [CrossRef] [PubMed] [Google Scholar]
  • Urnov, F., Rebar, E., Holmes, M., Zhang, H., & Gregory, P. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646. DOI: 10.1038/nrg2842 [CrossRef] [PubMed] [Google Scholar]
  • Wang, Y., Yang, C. H., Schultz, A. P., Sims, M. M., Miller, D. D., & Pfeffer, L. M. (2021). Brahma‐ related gene‐1 (BRG1) promotes the malignant phenotype of glioblastoma cells. Journal of Cellular and Molecular Medicine, 25(6), 2956-2966. doi:10.1111/jcmm.16330 [CrossRef] [PubMed] [Google Scholar]
  • Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. (2020) Unconstrained genome targeting with near-PAMless engineered CRISPRCas9 variants. Science 368 (6488), 290–296. [CrossRef] [PubMed] [Google Scholar]
  • Xu, X., Tao, Y., Gao, X., Zhang, L., Li, X., & Zou, W. et al. (2016). A CRISPR-based approach for targeted DNA demethylation. Cell Discovery, 2(1). doi: 10.1038/celldisc.2016.9 [Google Scholar]
  • Ye, L., Park, J., Dong, M., Yang, Q., Chow, R., & Peng, L. et al. (2019). In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identify membrane targets for improving immunotherapy for glioblastoma. Nature Biotechnology, 37(11), 1302-1313. DOI: 10.1038/s41587-019-0246-4 [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Z., Li, X., Yang, F., Chen, C., Liu, P., Ren, Y., Sun, P., Wang, Z., You, Y., Zeng, Y. X., & Li, X. (2021). DHHC9-mediated GLUT1 Spalmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nature communications, 12(1), 5872. https://doi.org/10.1038/s41467-021-26180-4 [CrossRef] [PubMed] [Google Scholar]
  • Zuckermann, M., Hovestadt, V., Knobbe-Thomsen, C., Zapatka, M., Northcott, P., & Schramm, K. et al. (2015). Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 6(1). DOI: 10.1038/ncomms8391 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.