Open Access
Issue
BIO Web Conf.
Volume 60, 2023
2022 4th International Conference on Biotechnology and Food Science (BFS 2022)
Article Number 02021
Number of page(s) 6
Section Agricultural Biotechnology and Food Safety
DOI https://doi.org/10.1051/bioconf/20236002021
Published online 11 May 2023
  • A. Gururajan, A. Reif, J. F. Cryan, and D. A. Slattery, “The future of rodent models in depression research, ” Nat Rev Neurosci, vol. 20, no. 11, pp. 686-701, Nov 2019, doi: 10.1038/s41583-019-0221-6. [CrossRef] [PubMed] [Google Scholar]
  • A. Hoflich, P. Michenthaler, S. Kasper, and R. Lanzenberger, “Circuit Mechanisms of Reward, Anhedonia, and Depression, ” Int J Neuropsychopharmacol, vol. 22, no. 2, pp. 105-118, Feb 1 2019, doi: 10.1093/ijnp/pyy081. [CrossRef] [PubMed] [Google Scholar]
  • A. Jahanshahi et al., “Altered expression of neuronal tryptophan hydroxylase-2 mRNA in the dorsal and median raphe nuclei of three genetically modified mouse models relevant to depression and anxiety, ” J Chem Neuroanat, vol. 41, no. 4, pp. 227-33, Jul 2011, doi: 10.1016/j.jchemneu.2011.05.015. [CrossRef] [PubMed] [Google Scholar]
  • G. Bruschetta, S. Jin, Z. W. Liu, J. D. Kim, and S. Diano, “MC4R Signaling in Dorsal Raphe Nucleus Controls Feeding, Anxiety, and Depression, ” Cell Rep, vol. 33, no. 2, p. 108267, Oct 13 2020, doi: 10.1016/j.celrep.2020.108267. [CrossRef] [PubMed] [Google Scholar]
  • C. G. Abdallah et al., “The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder, ” Neuropsychopharmacology, vol. 42, no. 8, pp. 1739-1746, Jul 2017, doi: 10.1038/npp.2017.49. [CrossRef] [PubMed] [Google Scholar]
  • C. Nauczyciel et al., “The nucleus accumbens: a target for deep brain stimulation in resistant major depressive disorder, ” Journal of Molecular Psychiatry, vol. 1, no. 1, p. 17, 2013/10/23 2013, doi: 10.1186/2049-9256-1-17. [CrossRef] [PubMed] [Google Scholar]
  • D. B. Rye, “Contributions of the Pedunculopontine Region to Normal and Altered REM Sleep, ” Sleep, vol. 20, no. 9, pp. 757-788, 1997, doi: 10.1093/sleep/20.9.757. [CrossRef] [PubMed] [Google Scholar]
  • D. Knowland, V. Lilascharoen, C. P. Pacia, S. Shin, E. H. Wang, and B. K. Lim, “Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression, ” Cell, vol. 170, no. 2, pp. 284-297 e18, Jul 13 2017, doi: 10.1016/j.cell.2017.06.015. [CrossRef] [PubMed] [Google Scholar]
  • D. Knowland and B. K. Lim, “Circuit-based frameworks of depressive behaviors: The role of reward circuitry and beyond, ” Pharmacol Biochem Behav, vol. 174, pp. 42-52, Nov 2018, doi: 10.1016/j.pbb.2017.12.010. [CrossRef] [PubMed] [Google Scholar]
  • G. Scheler, “Regulation of Neuronal Activity in VTA, ” 03/20 2000. [Google Scholar]
  • J. Dean and M. Keshavan, “The neurobiology of depression: An integrated view, ” Asian J Psychiatr, vol. 27, pp. 101-111, Jun 2017, doi: 10.1016/j.ajp.2017.01.025. [CrossRef] [PubMed] [Google Scholar]
  • J. Kaufling, “Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression, ” Cell Tissue Res, vol. 377, no. 1, pp. 59-71, Jul 2019, doi: 10.1007/s00441-019-03007-9. [CrossRef] [PubMed] [Google Scholar]
  • J.-P. Hornung, “The Human Nervous System (Third Edition), ” 2012/01/01/ 2012, doi: https://doi.org/10.1016/B978-0-12-374236-0.10011-2. Academic Press. [Google Scholar]
  • J. Xiao, M. Song, F. Li, X. Liu, A. Anwar, and H. Zhao, “Effects of GABA microinjection into dorsal raphe nucleus on behavior and activity of lateral habenular neurons in mice, ” Exp Neurol, vol. 298, no. Pt A, pp. 23-30, Dec 2017, doi: 10.1016/j.expneurol.2017.08.012. [CrossRef] [PubMed] [Google Scholar]
  • J. Xiu et al., “Hijacking Dorsal Raphe to Improve Metabolism and Depression-Like Behaviors via BDNF Gene Transfer in Mice, ” Diabetes, vol. 70, no. 8, pp. 1780-1793, Aug 2021, doi: 10.2337/db20-1030. [CrossRef] [PubMed] [Google Scholar]
  • K. M. Small, E. Nunes, S. Hughley, and N. A. Addy, “Ventral tegmental area muscarinic receptors modulate depression and anxiety-related behaviors in rats, ” Neurosci Lett, vol. 616, pp. 80-5, Mar 11 2016, doi: 10.1016/j.neulet.2016.01.057. [CrossRef] [PubMed] [Google Scholar]
  • K. T. Beier et al., “Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping, ” Cell, vol. 162, no. 3, pp. 622-34, Jul 30 2015, doi: 10.1016/j.cell.2015.07.015. [CrossRef] [PubMed] [Google Scholar]
  • L. Islam, A. Franzini, G. Messina, S. Scarone, and O. Gambini, “Deep brain stimulation of the nucleus accumbens and bed nucleus of stria terminalis for obsessive-compulsive disorder: a case series, ” World Neurosurg, vol. 83, no. 4, pp. 657-63, Apr 2015, doi: 10.1016/j.wneu.2014.12.024. [CrossRef] [PubMed] [Google Scholar]
  • L. M. Williams, “Precision psychiatry: a neural circuit taxonomy for depression and anxiety, ” The Lancet Psychiatry, vol. 3, no. 5, pp. 472-480, 2016, doi: 10.1016/s2215-0366(15)00579-9. [CrossRef] [PubMed] [Google Scholar]
  • I. Oliva and M. J. Wanat, “Ventral Tegmental Area Afferents and Drug-Dependent Behaviors, ” Frontiers in Psychiatry, vol. 7, 2016, doi: 10.3389/fpsyt.2016.00030. [CrossRef] [Google Scholar]
  • L. Xu, J. Nan, and Y. Lan, “The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction, ” Front Neural Circuits, vol. 14, p. 37, 2020, doi: 10.3389/fncir.2020.00037. [CrossRef] [PubMed] [Google Scholar]
  • M. E. Fox and M. K. Lobo, “The molecular and cellular mechanisms of depression: a focus on reward circuitry, ” Mol Psychiatry, vol. 24, no. 12, pp. 1798-1815, Dec 2019, doi: 10.1038/s41380-019-0415-3. [CrossRef] [PubMed] [Google Scholar]
  • M. Heshmati and S. J. Russo, “Anhedonia and the Brain Reward Circuitry in Depression, ” Current Behavioral Neuroscience Reports, vol. 2, no. 3, pp. 146-153, 2015, doi: 10.1007/s40473-015-0044-3. [CrossRef] [PubMed] [Google Scholar]
  • M. H. Han and E. J. Nestler, “Neural Substrates of Depression and Resilience, ” Neurotherapeutics, vol. 14, no. 3, pp. 677-686, Jul 2017, doi: 10.1007/s13311-017-0527-x. [CrossRef] [PubMed] [Google Scholar]
  • M. Bruchim-Samuel et al., “Electrical stimulation of the vmPFC serves as a remote control to affect VTA activity and improve depressive-like behavior, ” Exp Neurol, vol. 283, no. Pt A, pp. 255-63, Sep 2016, doi: 10.1016/j.expneurol.2016.05.016. [CrossRef] [PubMed] [Google Scholar]
  • M. L. Settell et al., “Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation, ” Front Neurosci, vol. 11, p. 104, 2017, doi: 10.3389/fnins.2017.00104. [CrossRef] [Google Scholar]
  • M. M. de Souza, G. P. Silote, L. S. Herbst, V. R. Funck, S. R. L. Joca, and V. Beijamini, “The antidepressant-like effect of galanin in the dorsal raphe nucleus of rats involves GAL2 receptors, ” Neurosci Lett, vol. 681, pp. 26-30, Aug 10 2018, doi: 10.1016/j.neulet.2018.05.029. [CrossRef] [PubMed] [Google Scholar]
  • N. Prakash, C. J. Stark, M. N. Keisler, L. Luo, A. Der-Avakian, and D. Dulcis, “Serotonergic Plasticity in the Dorsal Raphe Nucleus Characterizes Susceptibility and Resilience to Anhedonia, ” J Neurosci, vol. 40, no. 3, pp. 569-584, Jan 15 2020, doi: 10.1523/JNEUROSCI.1802-19.2019. [CrossRef] [PubMed] [Google Scholar]
  • P. Kumar et al., “Impaired reward prediction error encoding and striatal-midbrain connectivity in depression, ” Neuropsychopharmacology, vol. 43, no. 7, pp. 1581-1588, Jun 2018, doi: 10.1038/s41386-018-0032-x. [CrossRef] [PubMed] [Google Scholar]
  • R. Correia et al., “Involvement of nucleus accumbens D2-MSN projections to the ventral pallidum in anxious-like behavior, ” bioRxiv, p. 2022. 05. 23. 493058, 2022, doi: 10.1101/2022.05.23.493058. [Google Scholar]
  • R. Liu, Y. Wang, X. Chen, Z. Zhang, L. Xiao, and Y. Zhou, “Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder, ” Neuroimage Clin, vol. 30, p. 102599, 2021, doi: 10.1016/j.nicl.2021.102599. [CrossRef] [PubMed] [Google Scholar]
  • S. J. Baek, J. S. Park, J. Kim, Y. Yamamoto, and K. Tanaka-Yamamoto, “VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors, ” (in eng), Elife, vol. 11, Feb 14 2022, doi: 10.7554/eLife.72981. [Google Scholar]
  • T. C. Francis and M. K. Lobo, “Emerging Role for Nucleus Accumbens Medium Spiny Neuron Subtypes in Depression, ” Biol Psychiatry, vol. 81, no. 8, pp. 645-653, Apr 15 2017, doi: 10.1016/j.biopsych.2016.09.007. [CrossRef] [PubMed] [Google Scholar]
  • Z. Zhu, G. Wang, K. Ma, S. Cui, and J. H. Wang, “GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression, ” (in eng), Oncotarget, vol. 8, no. 22, pp. 35933-35945, May 30 2017, doi: 10.18632/oncotarget.16411. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.