Open Access
Issue
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01007
Number of page(s) 13
DOI https://doi.org/10.1051/bioconf/20236101007
Published online 21 June 2023
  • Fridoni M, Kouhkheil R, Abdollhifar MA, Amini A, Ghatrehsamani M, Ghoreishi SK, Chien S, Bayat S, Bayat M. Improvement in infected wound healing in type 1 diabetic rat by the synergistic effect of photobiomodulation therapy and conditioned medium. J Cell Biochem. 2019 Jun;120(6):9906-9916. doi: 10.1002/jcb.28273. Epub 2018 Dec 16. PMID: 30556154. [CrossRef] [PubMed] [Google Scholar]
  • Littig JPB, Moellmer R, Agrawal DK, Rai V. Future applications of exosomes delivering resolvins and cytokines in facilitating diabetic foot ulcer healing. World J Diabetes. 2023 Jan 15;14(1):35-47. doi: 10.4239/wjd.v14.i1.35. PMID: 36684384; PMCID: PMC9850797. [Google Scholar]
  • Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD, Olivieri F, Ceriello A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev. 2018 Jan;41:1-17. doi: 10.1016/j.arr.2017.10.003. Epub 2017 Oct 31. PMID: 29081381. [CrossRef] [Google Scholar]
  • Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018 Jan;1411(1):153-165. doi: 10.1111/nyas.13569. PMID: 29377202; PMCID: PMC5793889. [CrossRef] [Google Scholar]
  • Vuorlaakso M, Kiiski J, Salonen T, Karppelin M, Helminen M, Kaartinen I. Major Amputation Profoundly Increases Mortality in Patients With Diabetic Foot Infection. Front Surg. 2021 Apr 30;8:655902. doi: 10.3389/fsurg.2021.655902. PMID: 33996886; PMCID: PMC8120024. [CrossRef] [Google Scholar]
  • Huang C, Luo W, Wang Q, Ye Y, Fan J, Lin L, Shi C, Wei W, Chen H, Wu Y, Tang Y. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p. Stem Cell Res. 2021 Apr;52:102235. doi: 10.1016/j.scr.2021.102235. Epub 2021 Feb 11. PMID: 33601096. [CrossRef] [Google Scholar]
  • Li C, An Y, Sun Y, Yang F, Xu Q, Wang Z. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing Through the WNT/β-catenin Signaling Pathway in Dermal Fibroblasts. Stem Cell Rev Rep. 2022 Aug;18(6):2059-2073. doi: 10.1007/s12015-022-10378-0. Epub 2022 Apr 26. PMID: 35471485; PMCID: PMC9391246. [CrossRef] [PubMed] [Google Scholar]
  • Hu Y, Tao R, Chen L, Xiong Y, Xue H, Hu L, Yan C, Xie X, Lin Z, Panayi AC, Mi B, Liu G. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology. 2021 May 21;19(1):150. doi: 10.1186/s12951-021-00894-5. PMID: 34020670; PMCID: PMC8139165. [CrossRef] [Google Scholar]
  • Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med. 2019 Jun 26;16(6):549-571. doi: 10.1007/s13770-019-00196w. PMID: 31824819; PMCID: PMC6879704. [CrossRef] [PubMed] [Google Scholar]
  • Sun H, Pratt RE, Hodgkinson CP, Dzau VJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am J Physiol Cell Physiol. 2020 Dec 1;319(6):C1141-C1150. doi: 10.1152/ajpcell.00516.2019. Epub 2020 Oct 7. PMID: 33026832. [CrossRef] [PubMed] [Google Scholar]
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb 7;367(6478):eaau6977. doi: 10.1126/science.aau6977. PMID: 32029601; PMCID: PMC7717626. [CrossRef] [PubMed] [Google Scholar]
  • Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY, Gao XY. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res. 2022 Apr;178:106135. doi: 10.1016/j.phrs.2022.106135. Epub 2022 Feb 19. PMID: 35192956. [CrossRef] [Google Scholar]
  • Harding CV, Heuser JE, Stahl PD. Exosomes: looking back three decades and into the future. J Cell Biol. 2013 Feb 18;200(4):367-71. doi: 10.1083/jcb.201212113. Erratum in: J Cell Biol. 2013 Apr 29;201(3):485. PMID: 23420870; PMCID: PMC3575527. [CrossRef] [PubMed] [Google Scholar]
  • Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011 Dec;12(12):1659-68. doi: 10.1111/j.1600-0854.2011.01225.x. Epub 2011 Jun 30. PMID: 21645191. [CrossRef] [Google Scholar]
  • Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010 Nov;36(8):888-906. doi: 10.1055/s-0030-1267043. Epub 2010 Nov 3. PMID: 21049390. [CrossRef] [PubMed] [Google Scholar]
  • Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011 Jun 1;71(11):3792-801. doi: 10.1158/0008-5472.CAN-10-4455. Epub 2011 Apr 8. PMID: 21478294. [Google Scholar]
  • Zhang HG, Grizzle WE. Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res. 2011 Mar 1;17(5):959-64. doi: 10.1158/1078-0432.CCR-10-1489. Epub 2011 Jan 11. PMID: 21224375; PMCID: PMC3155407. [CrossRef] [PubMed] [Google Scholar]
  • Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI, Wille H, Prusiner SB, Mabbott NA, Peters PJ. Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog. 2011 Dec;7(12):e1002449. doi: 10.1371/journal.ppat.1002449. Epub 2011 Dec 22. PMID: 22216002; PMCID: PMC3245311. [CrossRef] [PubMed] [Google Scholar]
  • Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of Extracellular Matrix Production by Adipose Tissue-Derived Stem Cells for Development of Wound Healing Therapies. Int J Mol Sci. 2017 May 31;18(6):1167. doi: 10.3390/ijms18061167. PMID: 28561757; PMCID: PMC5485991. [CrossRef] [Google Scholar]
  • Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci. 2021 Aug 27;22(17):9317. doi: 10.3390/ijms22179317. PMID: 34502228; PMCID: PMC8431093. [CrossRef] [Google Scholar]
  • Narauskaitė D, Vydmantaitė G, Rusteikaitė J, Sampath R, Rudaitytė A, Stašytė G, Aparicio Calvente MI, Jekabsone A. Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel). 2021 Aug 18;14(8):811. doi: 10.3390/ph14080811. PMID: 34451909; PMCID: PMC8400229. [CrossRef] [Google Scholar]
  • Whelan C, Burnley-Hall N, Morris K, Rees DA, James PE. The procoagulant effects of extracellular vesicles derived from hypoxic endothelial cells can be selectively inhibited by inorganic nitrite. Nitric Oxide. 2022 May 1;122-123:6-18. doi: 10.1016/j.niox.2022.02.002. Epub 2022 Feb 21. PMID: 35202833. [CrossRef] [Google Scholar]
  • Hu H, Wang B, Jiang C, Li R, Zhao J. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin Sci (Lond). 2019 Jul 25;133(14):1629-1644. doi: 10.1042/CS20190188. PMID: 31315970. [CrossRef] [PubMed] [Google Scholar]
  • Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm. 2022 May 2;19(5):1294-1308. doi: 10.1021/acs.molpharmaceut.1c00669. Epub 2022 Mar 16. PMID: 35294195. [CrossRef] [PubMed] [Google Scholar]
  • Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, Gould LJ, Wu MH. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv Wound Care (New Rochelle). 2018 Sep 1;7(9):299-308. doi: 10.1089/wound.2017.0775. Epub 2018 Sep 4. PMID: 30263873; PMCID: PMC6158770. [CrossRef] [PubMed] [Google Scholar]
  • Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes. 2018 Feb;67(2):235-247. doi: 10.2337/db17-0356. Epub 2017 Nov 13. PMID: 29133512. [CrossRef] [PubMed] [Google Scholar]
  • Vu NB, Nguyen HT, Palumbo R, Pellicano R, Fagoonee S, Pham PV. Stem cell-derived exosomes for wound healing: current status and promising directions. Minerva Med. 2021 Jun;112(3):384-400. doi: 10.23736/S0026-4806.20.07205-5. Epub 2020 Dec 2. PMID: 33263376. [Google Scholar]
  • Fu W, Liang D, Wu X, Chen H, Hong X, Wang J, Zhu T, Zeng T, Lin W, Chen S, Yan L, Ren M. Long noncoding RNA LINC01435 impedes diabetic wound healing by facilitating YY1-mediated HDAC8 expression. iScience. 2022 Mar 1;25(4):104006. doi: 10.1016/j.isci.2022.104006. Erratum in: iScience. 2022 Jun 15;25(7):104540. PMID: 35330681; PMCID: PMC8938286. [CrossRef] [PubMed] [Google Scholar]
  • Qian L, Pi L, Fang BR, Meng XX. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab Invest. 2021 Sep;101(9):1254-1266. doi: 10.1038/s41374-021-00611-8. Epub 2021 May 27. PMID: 34045678. [CrossRef] [Google Scholar]
  • Li B, Luan S, Chen J, Zhou Y, Wang T, Li Z, Fu Y, Zhai A, Bi C. The MSC-Derived Exosomal lncRNA H19 Promotes Wound Healing in Diabetic Foot Ulcers by Upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids. 2020 Mar 6;19:814-826. doi: 10.1016/j.omtn.2019.11.034. Epub 2019 Dec 14. PMID: 31958697; PMCID: PMC70054 [CrossRef] [PubMed] [Google Scholar]
  • Heo JS, Kim S. Human adipose mesenchymal stem cells modulate inflammation and angiogenesis through exosomes. Sci Rep. 2022 Feb 17;12(1):2776. doi: 10.1038/s41598-022-06824-1. PMID: 35177768; PMCID: PMC8854709. [CrossRef] [Google Scholar]
  • Han KY, Chang JH, Azar DT. MMP14-Containing Exosomes Cleave VEGFR1 and Promote VEGFA-Induced Migration and Proliferation of Vascular Endothelial Cells. Invest Ophthalmol Vis Sci. 2019 May 1;60(6):2321-2329. doi: 10.1167/iovs.18-26277. PMID: 31117124; PMCID: PMC6532701. [CrossRef] [Google Scholar]
  • Li J, Li Z, Wang S, Bi J, Huo R. Exosomes from human adipose-derived mesenchymal stem cells inhibit production of extracellular matrix in keloid fibroblasts via downregulating transforming growth factor-β2 and Notch-1 expression. Bioengineered. 2022 Apr;13(4):8515-8525. doi: 10.1080/21655979.2022.2051838. PMID: 35333672; PMCID: PMC9161879. [CrossRef] [PubMed] [Google Scholar]
  • Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004 Feb 10;109(5):656-63. doi: 10.1161/01.CIR.0000114522.38265.61. Epub 2004 Jan 20. PMID: 14734516. [CrossRef] [PubMed] [Google Scholar]
  • Hutchings G, Janowicz K, Moncrieff L, Dompe C, Strauss E, Kocherova I, Nawrocki MJ, Kruszyna Ł, Wąsiatycz G, Antosik P, Shibli JA, Mozdziak P, Perek B, Krasiński Z, Kempisty B, Nowicki M. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int J Mol Sci. 2020 May 27;21(11):3790. doi: 10.3390/ijms21113790. PMID: 32471255; PMCID: PMC7312564. [CrossRef] [Google Scholar]
  • Ma T, Sun J, Zhao Z, Lei W, Chen Y, Wang X, Yang J, Shen Z. A brief review: adipose-derived stem cells and their therapeutic potential in cardiovascular diseases. Stem Cell Res Ther. 2017 Jun 5;8(1):124. doi: 10.1186/s13287-017-0585-3. PMID: 28583198; PMCID: PMC5460549. [CrossRef] [Google Scholar]
  • Le Pillouer-Prost A. Fibroblasts: what's new in cellular biology? J Cosmet Laser Ther. 2003 Dec;5(3-4):232-8. doi: 10.1080/14764170310021869. PMID: 14741842. [CrossRef] [PubMed] [Google Scholar]
  • Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc. 2018 Feb;81(2):94-101. doi: 10.1016/j.jcma.2017.11.002. Epub 2017 Nov 21. PMID: 29169897. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Pan Y, Liu Y, Li X, Tang L, Duan M, Li J, Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther. 2021 Aug 3;12(1):434. doi: 10.1186/s13287-021-02517-0. PMID: 34344478; PMCID: PMC8336384. [CrossRef] [Google Scholar]
  • Sheng L, Yang M, Liang Y, Li Q. Adipose tissue-derived stem cells (ADSCs) transplantation promotes regeneration of expanded skin using a tissue expansion model. Wound Repair Regen. 2013 Sep-Oct;21(5):746-54. doi: 10.1111/wrr.12080. Epub 2013 Aug 12. PMID: 23937682. [Google Scholar]
  • Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel-Maksoud MS, Elsherbiny N. Exosomes: Isolation, characterization, and biomedical applications. Cell Biol Int. 2021 Sep;45(9):1807-1831. doi: 10.1002/cbin.11620. Epub 2021 May 11. PMID: 33913604. [Google Scholar]
  • An Y, Zhao J, Nie F, Qin Z, Xue H, Wang G, Li D. Exosomes from Adipose-Derived Stem Cells (ADSCs) Overexpressing miR-21 Promote Vascularization of Endothelial Cells. Sci Rep. 2019 Sep 6;9(1):12861. doi: 10.1038/s41598-019-49339-y. PMID: 31492946; PMCID: PMC6731308. [CrossRef] [Google Scholar]
  • Bu H, He D, He X, Wang K. Exosomes: Isolation, Analysis, and Applications in Cancer Detection and Therapy. Chembiochem. 2019 Feb 15;20(4):451-461. doi: 10.1002/cbic.201800470. Epub 2018 Dec 7. PMID: 30371016. [CrossRef] [PubMed] [Google Scholar]
  • Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in Exosome Isolation Techniques. Theranostics. 2017 Jan 26;7(3):789-804. doi: 10.7150/thno.18133. PMID: 28255367; PMCID: PMC5327650. [CrossRef] [Google Scholar]
  • Ryu KJ, Lee JY, Park C, Cho D, Kim SJ. Isolation of Small Extracellular Vesicles From Human Serum Using a Combination of Ultracentrifugation With Polymer-Based Precipitation. Ann Lab Med. 2020 May;40(3):253-258. doi: 10.3343/alm.2020.40.3.253. PMID: 31858766; PMCID: PMC6933066. [CrossRef] [PubMed] [Google Scholar]
  • Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. Chem Rev. 2018 Feb 28;118(4):1917-1950. doi: 10.1021/acs.chemrev.7b00534. Epub 2018 Jan 31. PMID: 29384376; PMCID: PMC6029891. [CrossRef] [PubMed] [Google Scholar]
  • Elahi FM, Farwell DG, Nolta JA, Anderson JD. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020 Jan;38(1):15-21. doi: 10.1002/stem.3061. Epub 2019 Oct 1. PMID: 31381842; PMCID: PMC7004029. [CrossRef] [PubMed] [Google Scholar]
  • Lässer C, Eldh M, Lötvall J. Isolation and characterization of RNA-containing exosomes. J Vis Exp. 2012 Jan 9;(59):e3037. doi: 10.3791/3037. PMID: 22257828; PMCID: PMC3369768. [Google Scholar]
  • Zhao R, Zhao T, He Z, Cai R, Pang W. Composition, isolation, identification and function of adipose tissue-derived exosomes. Adipocyte. 2021 Dec;10(1):587-604. doi: 10.1080/21623945.2021.1983242. PMID: 34709975; PMCID: PMC8604391. [CrossRef] [PubMed] [Google Scholar]
  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011 Apr;29(4):341-5. doi: 10.1038/nbt.1807. Epub 2011 Mar 20. PMID: 21423189. [CrossRef] [PubMed] [Google Scholar]
  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014 Feb;35(7):2383-90. doi: 10.1016/j.biomaterials.2013.11.083. Epub 2013 Dec 15. PMID: 24345736. [CrossRef] [Google Scholar]
  • Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015 Dec 10;219:396-405. doi: 10.1016/j.jconrel.2015.07.030. Epub 2015 Aug 1. PMID: 26241750; PMCID: PMC4656109. [CrossRef] [PubMed] [Google Scholar]
  • Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, Matsumoto A, Charoenviriyakul C, Takakura Y. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015 Feb 9;4:26238. doi: 10.3402/jev.v4.26238. PMID: 25669322; PMCID: PMC4323410. [CrossRef] [Google Scholar]
  • Patel S, Caldwell JM, Doty SB, Levine WN, Rodeo S, Soslowsky LJ, Thomopoulos S, Lu HH. Integrating soft and hard tissues via interface tissue engineering. J Orthop Res. 2018 Apr;36(4):1069-1077. doi: 10.1002/jor.23810. Epub 2018 Jan 5. PMID: 29149506; PMCID: PMC6467291. [CrossRef] [PubMed] [Google Scholar]
  • Sun B, Wu F, Wang X, Song Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N, Wang W, Yao C, Shen J. An Optimally Designed Engineering Exosome-Reductive COF Integrated Nanoagent for Synergistically Enhanced Diabetic Fester Wound Healing. Small. 2022 Jul;18(26):e2200895. doi: 10.1002/smll.202200895. Epub 2022 May 31. PMID: 35638464. [CrossRef] [Google Scholar]
  • Akbari A, Jabbari N, Sharifi R, Ahmadi M, Vahhabi A, Seyedzadeh SJ, Nawaz M, Szafert S, Mahmoodi M, Jabbari E, Asghari R, Rezaie J. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci. 2020 May 15;249:117447. doi: 10.1016/j.lfs.2020.117447. Epub 2020 Feb 19. PMID: 32087234. [CrossRef] [Google Scholar]
  • Xiao S, Zhao T, Wang J, Wang C, Du J, Ying L, Lin J, Zhang C, Hu W, Wang L, Xu K. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Stem Cell Rev Rep. 2019 Oct;15(5):664-679. doi: 10.1007/s12015-019-09893-4. PMID: 31154619. [CrossRef] [PubMed] [Google Scholar]
  • Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, Gerecht S. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016 Sep;102:107-19. doi: 10.1016/j.biomaterials.2016.06.009. Epub 2016 Jun 4. PMID: 27328431. [CrossRef] [Google Scholar]
  • Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int J Nanomedicine. 2020 Aug 11;15:5911-5926. doi: 10.2147/IJN.S249129. PMID: 32848396; PMCID: PMC7429232. [CrossRef] [Google Scholar]
  • Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, Xu H, Lei B, Mao C. Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics. 2019 Jan 1;9(1):65-76. doi: 10.7150/thno.29766. Erratum in: Theranostics. 2021 Nov 10;11(20):10174-10175. PMID: 30662554; PMCID: PMC6332800. [CrossRef] [PubMed] [Google Scholar]
  • Rai V, Moellmer R, Agrawal DK. The role of CXCL8 in chronic nonhealing diabetic foot ulcers and phenotypic changes in fibroblasts: a molecular perspective. Mol Biol Rep. 2022 Feb;49(2):1565-1572. doi: 10.1007/s11033-022-07144-3. Epub 2022 Jan 19. PMID: 35044539. [CrossRef] [PubMed] [Google Scholar]
  • Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, Xu W, Mao F. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc. 2020 Oct;95(5):1287-1307. doi: 10.1111/brv.12608. Epub 2020 May 14. PMID: 32410383; PMCID: PMC7540363. [CrossRef] [PubMed] [Google Scholar]
  • Gondaliya P, Sayyed AA, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-155 Inhibitor Ameliorate Diabetic Wound Healing. Mol Pharm. 2022 May 2;19(5):1294-1308. doi: 10.1021/acs.molpharmaceut.1c00669. Epub 2022 Mar 16. PMID: 35294195. [CrossRef] [PubMed] [Google Scholar]
  • Capó X, Martorell M, Busquets-Cortés C, Tejada S, Tur JA, Pons A, Sureda A. Resolvins as proresolving inflammatory mediators in cardiovascular disease. Eur J Med Chem. 2018 Jun 10;153:123-130. doi: 10.1016/j.ejmech.2017.07.018. Epub 2017 Jul 13. PMID: 28732558. [CrossRef] [Google Scholar]
  • Patel N, Chin DD, Chung EJ. Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS J. 2021 Jul 26;23(5):95. doi: 10.1208/s12248-021-00621-w. PMID: 34312734. [CrossRef] [Google Scholar]
  • Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio AD, Olivieri F, Ceriello A. Inflammageing and metaflammation: The yin and yang of type 2 diabetes. Ageing Res Rev. 2018 Jan;41:1-17. doi: 10.1016/j.arr.2017.10.003. Epub 2017 Oct 31. PMID: 29081381. [CrossRef] [Google Scholar]
  • Xu M, Yang Q, Sun X, Wang Y. Recent Advancements in the Loading and Modification of Therapeutic Exosomes. Front Bioeng Biotechnol. 2020 Nov 11;8:586130. doi: 10.3389/fbioe.2020.586130. PMID: 33262977; PMCID: PMC7686035. [CrossRef] [Google Scholar]
  • Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020 Apr 2;181(1):151-167. doi: 10.1016/j.cell.2020.02.001. PMID: 32243788. [CrossRef] [Google Scholar]
  • He N, Thippabhotla S, Zhong C, Greenberg Z, Xu L, Pessetto Z, Godwin AK, Zeng Y, He M. Nano pom-poms prepared exosomes enable highly specific cancer biomarker detection. Commun Biol. 2022 Jul 4;5(1):660. doi: 10.1038/s42003-022-03598-0. PMID: 35787656; PMCID: PMC9253007. [CrossRef] [Google Scholar]
  • Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012 Jun 27;3:228. doi: 10.3389/fphys.2012.00228. PMID: 22754538; PMCID: PMC3384085. [Google Scholar]
  • Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019 Sep;459(1-2):1-6. doi: 10.1007/s11010-019-03545-4. Epub 2019 May 9. PMID: 31073888. [CrossRef] [PubMed] [Google Scholar]
  • Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells. 2021 Sep 27;10(10):2553. doi: 10.3390/cells10102553. PMID: 34685532; PMCID: PMC8533909. [CrossRef] [Google Scholar]
  • Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci. 2017 Aug 25;18(9):1852. doi: 10.3390/ijms18091852. PMID: 28841158; PMCID: PMC5618501. [CrossRef] [Google Scholar]
  • Li X, Xie X, Lian W, Shi R, Han S, Zhang H, Lu L, Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018 Apr 13;50(4):1-14. doi: 10.1038/s12276-018-0058-5. PMID: 29651102; PMCID: PMC5938041. [Google Scholar]
  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008 Feb;26(2):300-11. doi: 10.1634/stemcells.2007-0594. Epub 2007 Nov 1. PMID: 17975221. [CrossRef] [PubMed] [Google Scholar]
  • In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338-45. doi: 10.1634/stemcells.2004-0058. PMID: 15579651. [CrossRef] [PubMed] [Google Scholar]
  • Schroeder DI, Blair JD, Lott P, Yu HO, Hong D, Crary F, Ashwood P, Walker C, Korf I, Robinson WP, LaSalle JM. The human placenta methylome. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6037-42. doi: 10.1073/pnas.1215145110. Epub 2013 Mar 25. PMID: 23530188; PMCID: PMC3625261. [CrossRef] [PubMed] [Google Scholar]
  • Castrechini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, Brennecke SP, Kalionis B. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta. 2010 Mar;31(3):203-12. doi: 10.1016/j.placenta.2009.12.006. Epub 2010 Jan 13. PMID: 20060164. [CrossRef] [Google Scholar]
  • Chen CY, Liu SH, Chen CY, Chen PC, Chen CP. Human placenta-derived multipotent mesenchymal stromal cells involved in placental angiogenesis via the PDGF-BB and STAT3 pathways. Biol Reprod. 2015 Oct;93(4):103. doi: 10.1095/biolreprod.115.131250. Epub 2015 Sep 9. PMID: 26353894. [Google Scholar]
  • Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 2020 Jan;77(2):253-265. doi: 10.1007/s00018-019-03268-1. Epub 2019 Aug 29. PMID: 31468060. [Google Scholar]
  • Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017 Jun 3;389(10085):2239-2251. doi: 10.1016/S0140-6736(17)30058-2. Epub 2017 Feb 10. Erratum in: Lancet. 2017 Jun 3;389(10085):2192. PMID: 28190580. [CrossRef] [PubMed] [Google Scholar]
  • Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis †. Ann Med. 2017 Mar;49(2):106-116. doi: 10.1080/07853890.2016.1231932. Epub 2016 Nov 3. PMID: 27585063. [CrossRef] [PubMed] [Google Scholar]
  • Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, Mateen QN, Singh P, Singh M, Singla A, Ahmad J. Mesenchymal Stromal Cell-Derived Tailored Exosomes Treat Bacteria-Associated Diabetes Foot Ulcers: A Customized Approach From Bench to Bed. Front Microbiol. 2021 Jul 27;12:712588. doi: 10.3389/fmicb.2021.712588. PMID: 34385994; PMCID: PMC8354005. [CrossRef] [Google Scholar]
  • Rai V, Moellmer R, Agrawal DK. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells. 2022 Jul 25;11(15):2287. doi: 10.3390/cells11152287. PMID: 35892584; PMCID: PMC9330772. [CrossRef] [Google Scholar]
  • Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014 Mar;14(3):195-208. doi: 10.1038/nri3622. PMID: 24566916; PMCID: PMC4350779. [CrossRef] [PubMed] [Google Scholar]
  • An T, Chen Y, Tu Y, Lin P. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Treatment of Diabetic Foot Ulcers: Application and Challenges. Stem Cell Rev Rep. 2021 Apr;17(2):369-378. doi: 10.1007/s12015-020-10014-9. PMID: 32772239. [CrossRef] [PubMed] [Google Scholar]
  • Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017 May 31;12:4085-4109. doi: 10.2147/IJN.S132780. PMID: 28615938; PMCID: PMC5459982. [CrossRef] [Google Scholar]
  • Wang B, Meng W, Bi M, Ni Y, Cai Q, Wang J. Uniform magnesium silicate hollow spheres as high drug-loading nanocarriers for cancer therapy with low systemic toxicity. Dalton Trans. 2013 Jun 28;42(24):8918-25. doi: 10.1039/c3dt50659b. Epub 2013 May 9. PMID: 23660815. [CrossRef] [PubMed] [Google Scholar]
  • Wang H, Li X, Ma Z, Wang D, Wang L, Zhan J, She L, Yang F. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy. Int J Nanomedicine. 2016 Apr 27;11:1793-806. doi: 10.2147/IJN.S103020. PMID: 27175077; PMCID: PMC4854254. [Google Scholar]
  • Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS. Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed Engl. 2009;48(2):321-4. doi: 10.1002/anie.200802323. PMID: 19040234. [CrossRef] [Google Scholar]
  • Cheng K, Peng S, Xu C, Sun S. Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. J Am Chem Soc. 2009 Aug 5;131(30):10637-44. doi: 10.1021/ja903300f. PMID: 19722635; PMCID: PMC2739121. [CrossRef] [PubMed] [Google Scholar]
  • Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed Engl. 2006 Sep 11;45(36):5974-8. doi: 10.1002/anie.200601878. PMID: 16897793. [CrossRef] [PubMed] [Google Scholar]
  • Ren D, Kratz F, Wang SW. Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochem Eng J. 2014 Aug 15;89:33-41. doi: 10.1016/j.bej.2013.09.008. PMID: 25018664; PMCID: PMC4090709. [CrossRef] [Google Scholar]
  • Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E, Murdoch WJ. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010 Mar 31;132(12):4259-65. doi: 10.1021/ja909475m. PMID: 20218672. [CrossRef] [PubMed] [Google Scholar]
  • Kowalczuk A, Stoyanova E, Mitova V, Shestakova P, Momekov G, Momekova D, Koseva N. Star-shaped nano-conjugates of cisplatin with high drug payload. Int J Pharm. 2011 Feb 14;404(1-2):220-30. doi: 10.1016/j.ijpharm.2010.11.004. Epub 2010 Nov 13. PMID: 21078377. [CrossRef] [Google Scholar]
  • Tachibana M, Iwaizumi M, Tero-Kubota S. EPR studies of copper(II) and cobalt(II) complexes of adriamycin. J Inorg Biochem. 1987 Jun;30 (2):133-40. doi: 10.1016/0162-0134(87)80049-1. PMID: 3037023. [CrossRef] [Google Scholar]
  • Zhang J, Li S, An FF, Liu J, Jin S, Zhang JC, Wang PC, Zhang X, Lee CS, Liang XJ. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale. 2015 Aug 28;7(32):13503-10. doi: 10.1039/c5nr03259h. Epub 2015 Jul 22. PMID: 26199064; PMCID: PMC4636738. [CrossRef] [PubMed] [Google Scholar]
  • Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, Zhu X, Yan D. Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc. 2014 Aug 20;136(33):11748-56. doi: 10.1021/ja505212y. Epub 2014 Aug 7. PMID: 25078892. [CrossRef] [PubMed] [Google Scholar]
  • Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche JM, Serre C. Biodegradable therapeutic MOFs for the delivery of bioactive molecule s. Chem Commun (Camb). 2010 Jul 7;46(25):4526-8. doi: 10.1039/c001181 a. Epub 2010 May 13. PMID: 20467672. [CrossRef] [PubMed] [Google Scholar]
  • Lin W, Rieter WJ, Taylor KM. Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed Engl. 2009;48(4):650-8. doi: 10.1002/anie.200803387. PMID: 19065692; PMCID: PMC4040293. [CrossRef] [Google Scholar]
  • Ding J, Wang X, Chen B, Zhang J, Xu J. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis. Biomed Res Int. 2019 May 5;2019:9742765. doi: 10.1155/2019/9742765. PMID: 31192260; PMCID: PMC6525840. [Google Scholar]
  • Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, Zhang C, Li Q, Wang Y. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. Int J Biol Sci. 2016 Nov 25;12(12):1472-1487. doi: 10.7150/ijbs.15514. PMID: 27994512; PMCID: PMC5166489. [CrossRef] [Google Scholar]
  • Li X, Xie X, Lian W, Shi R, Han S, Zhang H, Lu L, Li M. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutane ous wound healing by promoting vascularization in a diabetic foot ulce r rat model. Exp Mol Med. 2018 Apr 13;50(4):1-14. doi: 10.1038/s12276- 018-0058-5. PMID: 29651102; PMCID: PMC5938041. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.