Open Access
Issue |
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/bioconf/20236101006 | |
Published online | 21 June 2023 |
- Suzuki S, Kawai K, Ohashi S, Mukai H, Yamashita K. Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas. Endocrinology. 1989;125(6):3109-3114. doi:10.1210/endo-125-6-3109 [CrossRef] [PubMed] [Google Scholar]
- Adelhorst K, Hedegaard BB, Knudsen LB, Kirk O. Structure-activity studies of glucagon-like peptide-1. J Biol Chem. 1994;269(9):6275-6278. [CrossRef] [Google Scholar]
- Göke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268(26):19650-19655. [CrossRef] [Google Scholar]
- Knudsen LB, Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne). 2019;10:155. Published 2019 Apr 12. doi:10.3389/fendo.2019.00155 [CrossRef] [Google Scholar]
- Tzaban S, Massol RH, Yen E, et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol. 2009;185(4):673-684. doi:10.1083/jcb.200809122 [CrossRef] [PubMed] [Google Scholar]
- Kim DM, Chu SH, Kim S, Park YW, Kim SS. Fc fusion to glucagon-like peptide-1 inhibits degradation by human DPP-IV, increasing its half-life in serum and inducing a potent activity for human GLP-1 receptor activation. BMB Rep. 2009; 42(4):212-216. doi:10.5483/bmbrep.2009.42.4.212 [Google Scholar]
- DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P. Encapsulation of exenatide in poly-(D,L-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther. 2011;13(11):1145-1154. doi:10.1089/dia.2011.0050 [CrossRef] [PubMed] [Google Scholar]
- Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5-24. doi:10.1016/s0169-409x(97)00048-3 [CrossRef] [Google Scholar]
- Yu M, Benjamin MM, Srinivasan S, et al. Battle of GLP-1 delivery technologies. Adv Drug Deliv Rev. 2018;130:113-130. doi:10.1016/j.addr.2018.07.009 [CrossRef] [Google Scholar]
- Chinese Medical Association, Diabetes Branch, National Office of Primary Diabetes Prevention and Management. National primary care diabetes prevention and management guidelines (2022) [J]. Chinese Journal of Internal Medicine, 2022, 61(3): 249-262. doi:10.3760/cma.j.cn112138-20220120-000063. [Google Scholar]
- Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A. 1987;84(10):3434-3438. [CrossRef] [PubMed] [Google Scholar]
- Béguin P, Nagashima K, Nishimura M, Gonoi T, Seino S. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J. 1999;18(17):4722-4732. [CrossRef] [Google Scholar]
- Kang G, Leech CA, Chepurny OG, Coetzee WA, Holz GG. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J Physiol. 2008;586(5):1307-1319. [CrossRef] [Google Scholar]
- Chen Jingwen, Liu Xingfeng, Cui Bing, Li Pingping. Advances in the study of glucagon receptor-related compounds[J]. Journal of Pharmacology, 2021, 56(09): 2447-2455. DOI:10.16438/j.0513-4870.2021-0403. [Google Scholar]
- Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7-36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab. 1996;81(1):327-332. doi:10.1210/jcem.81.1.8550773 [Google Scholar]
- Hare KJ, Knop FK, Asmar M, et al. Preserved inhibitory potency of GLP-1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(12):4679-4687. doi:10.1210/jc.2009-0921 [CrossRef] [PubMed] [Google Scholar]
- Plamboeck A, Veedfald S, Deacon CF, et al. The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R544-R551. doi:10.1152/ajpregu.00123.2015 [CrossRef] [PubMed] [Google Scholar]
- Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988;123(4):2009-2013. doi:10.1210/endo-123-4-2009 [CrossRef] [PubMed] [Google Scholar]
- Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018;27(4):740-756. doi:10.1016/j.cmet.2018.03.001 [CrossRef] [Google Scholar]
- Gallwitz B, Böhmer M, Segiet T, et al. Exenatide twice daily versus premixed insulin aspart 70/30 in metformin-treated patients with type 2 diabetes: a randomized 26-week study on glycemic control and hypoglycemia. Diabetes Care. 2011;34(3):604-606. doi:10.2337/dc10-1900 [CrossRef] [PubMed] [Google Scholar]
- Rosenstock J, Hanefeld M, Shamanna P, et al. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J Diabetes Complications. 2014;28(3):386-392. doi:10.1016/j. jdiacomp.2014.01.012 [CrossRef] [Google Scholar]
- Xiao X, Wang C, Lai X, et al. Achieving the composite end-point of glycated hemoglobin <7.0% without weight gain or hypoglycemia with once-weekly dulaglutide in Chinese patients with type 2 diabetes: A post-hoc analysis. J Diabetes Investig. 2020;11(3):647-652. doi:10.1111/jdi.13187 [CrossRef] [PubMed] [Google Scholar]
- Ceriello A, Novials A, Ortega E, et al. Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care. 2013;36(8):2346-2350. doi:10.2337/dc12-2469 [CrossRef] [PubMed] [Google Scholar]
- Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. doi:10.1016/j.biopha.2021.111315 [CrossRef] [Google Scholar]
- Astrup A, Carraro R, Finer N, et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide [published correction appears in Int J Obes (Lond). 2012 Jun;36(6):890] [published correction appears in Int J Obes (Lond). 2013 Feb;37(2):322]. Int J Obes (Lond). 2012;36(6):843-854. doi:10.1038/ijo.2011.158 [CrossRef] [PubMed] [Google Scholar]
- Marre M, Shaw J, Brändle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea 26 weeks produces greater improvements in lycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med. 2009;26(3):268-278. doi:10.1111/j.1464-5491.2009.02666.x [CrossRef] [Google Scholar]
- Davies M, Færch L, Jeppesen OK, et al. Semaglutide 2ꞏ4 mg once a week in adults with overweight orobesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet. 2021;397(10278):971-984. doi:10.1016/S0140-6736(21)00213-0 [CrossRef] [Google Scholar]
- Rodgers M, Migdal AL, Rodríguez TG, et al. Weight Loss Outcomes Among Early High Responders to Exenatide Treatment: A Randomized, Placebo Controlled Study in Overweight and Obese Women. Front Endocrinol (Lausanne). 2021;12:742873. Published 2021 Nov 17. doi:10.3389/fendo.2021.742873 [CrossRef] [Google Scholar]
- Blundell J, Finlayson G, Axelsen M, et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab. 2017;19(9):1242-1251. doi:10.1111/dom.12932 [CrossRef] [PubMed] [Google Scholar]
- Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies [published correction appears in Lancet. 2010 Sep 18;376(9745):958. Hillage, H L [corrected to Hillege, H L]]. Lancet. 2010;375(9733):2215-2222. doi:10.1016/S0140-6736(10)60484-9 [Google Scholar]
- Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83. Published 2018 Jun 8. doi:10.1186/s12933-018-0728-6 [Google Scholar]
- Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567-574. doi:10.1016/0735-1097(95)00522-6 [CrossRef] [Google Scholar]
- Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-636. doi:10.1161/CIRCRESAHA.115.306301 [CrossRef] [PubMed] [Google Scholar]
- Moreno PR, Murcia AM, Palacios IF, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180-2184. doi:10.1161/01.cir.102.18.2180 [CrossRef] [PubMed] [Google Scholar]
- Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311-322. doi:10.1056/NEJMoa1603827 [CrossRef] [PubMed] [Google Scholar]
- Brown-Frandsen K, Emerson SS, McGuire DK, et al. Lower rates of cardiovascular events and mortality associated with liraglutide use in patients treated with basal insulin: A DEVOTE subanalysis (DEVOTE 10). Diabetes Obes Metab. 2019;21(6):1437-1444. doi:10.1111/dom.13677 [CrossRef] [PubMed] [Google Scholar]
- Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105-113. doi:10.1016/S2213-8587(17)30412-6 [CrossRef] [Google Scholar]
- Ojo O. The Use of Exenatide in Managing Markers of Cardiovascular Risk in Patients with Type 2 Diabetes: A Systematic Review. Int J Environ Res Public Health. 2016;13(10):941. Published 2016 Sep 23. doi:10.3390/ijerph13100941 [CrossRef] [PubMed] [Google Scholar]
- Tian Guowei. Research progress of glucagon-like peptide-1 receptor agonists in cardiovascular complications in patients with type 2 diabetes mellitus[J]. Journal of Doubtful Diseases, 2018, 17(1):86-90. doi: 10.3969/j.issn.1671-6450. 2018.01.023. [Google Scholar]
- Bunck MC, Diamant M, Eliasson B, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010;33(8):1734-1737. doi:10.2337/dc09-2361 [CrossRef] [PubMed] [Google Scholar]
- Husain M, Bain SC, Jeppesen OK, et al. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020;22(3):442-451. doi:10.1111/dom.13955 [CrossRef] [PubMed] [Google Scholar]
- Plantinga LC, Crews DC, Coresh J, et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol. 2010;5(4):673-682. doi:10.2215/CJN.07891109 [CrossRef] [PubMed] [Google Scholar]
- Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne). 2018;9:672. Published 2018 Nov 23. doi:10.3389/fendo.2018.00672 [CrossRef] [Google Scholar]
- Skov J, Pedersen M, Holst JJ, et al. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial. Diabetes Obes Metab. 2016;18(6):581-589. doi:10.1111/dom.12651 [CrossRef] [Google Scholar]
- Muskiet MHA, Tonneijck L, Huang Y, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6(11):859-869. doi:10.1016/S2213-8587(18)30268-7 [CrossRef] [Google Scholar]
- Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018;6(8):605-617. doi:10.1016/S2213-8587(18)30104-9 [CrossRef] [Google Scholar]
- Davies M, Chatterjee S, Khunti K. The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies. Clin Pharmacol. 2016;8:61-81. Published 2016 Jun 23. doi:10.2147/CPAA.S82008 [Google Scholar]
- Seo E, Lim JS, Jun JB, Choi W, Hong IS, Jun HS. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Transl Med. 2017;15(1):35. Published 2017 Feb 15. doi:10.1186/s12967-017-1145-4 [CrossRef] [Google Scholar]
- Dhatariya K, Bain SC, Buse JB, et al. The Impact of Liraglutide on Diabetes-Related Foot Ulceration and Associated Complications in Patients With Type 2 Diabetes at High Risk for Cardiovascular Events: Results From the LEADER Trial. Diabetes Care. 2018;41(10):2229-2235. doi:10.2337/dc18-1094 [CrossRef] [PubMed] [Google Scholar]
- Sun F, Chai S, Yu K, et al. Gastrointestinal adverse events of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Technol Ther. 2015;17(1):35-42. doi:10.1089/dia.2014.0188 [CrossRef] [PubMed] [Google Scholar]
- Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse Effects of GLP-1 Receptor Agonists. Rev Diabet Stud. 2014;11(3-4):202-230. doi:10.1900/RDS.2014.11.202 [CrossRef] [PubMed] [Google Scholar]
- Pencek R, Brunell SC, Li Y, Hoogwerf BJ, Malone J. Exenatide once weekly for the treatment of type 2 diabetes mellitus: clinical results in subgroups of patients using different concomitant medications. Postgrad Med. 2012;124(4):33-40. doi:10.3810/pgm.2012.07.2568 [CrossRef] [PubMed] [Google Scholar]
- Madsbad S, Kielgast U, Asmar M, Deacon CF, Torekov SS, Holst JJ. An overview of once-weekly glucagon-like peptide-1 receptor agonists--available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011;13(5):394-407. doi:10.1111/j.1463-1326.2011.01357.x [CrossRef] [Google Scholar]
- Monami M, Nreu B, Scatena A, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab. 2017;19(9):1233-1241. doi:10.1111/dom.12926 [CrossRef] [PubMed] [Google Scholar]
- Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin Pract. 2014;103(2):269-275. doi:10.1016/j.diabres.2014.01.010 [CrossRef] [Google Scholar]
- Bunck MC, Eliasson B, Cornér A, et al. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(4):374-377. doi:10.1111/j.1463-1326.2010.01355.x [CrossRef] [Google Scholar]
- Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse Effects of GLP-1 Receptor Agonists. Rev Diabet Stud. 2014;11(3-4):202-230. doi:10.1900/RDS.2014.11.202 [CrossRef] [PubMed] [Google Scholar]
- Zhao H, Wei R, Wang L, et al. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am J Physiol Endocrinol Metab. 2014;306(12):E1431-E1441. doi:10.1152/ajpendo.00017.2014 Sadri H. Contingent valuation of inhaled insulin: a Canadian perspective. J Med Econ. 2007;10(4):475–487. [CrossRef] [PubMed] [Google Scholar]
- Sadri H. Contingent valuation of inhaled insulin: a Canadian perspective. J Med Econ. 2007;10(4):475– 487. [CrossRef] [Google Scholar]
- Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443-1467. doi:10.4155/tde.13.104 [CrossRef] [PubMed] [Google Scholar]
- Buckley ST, Bækdal TA, Vegge A, et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med. 2018;10(467):eaar7047. doi:10.1126/scitranslmed.aar7047 [CrossRef] [PubMed] [Google Scholar]
- Maarbjerg SJ, Borregaard J, Breitschaft A, Donsmark M, Søndergaard FL. Evaluation of the effect of food on the pharmacokinetics of oral semaglutide. Diabetes. 2017;66(Suppl 1):A321. [Google Scholar]
- Andersen A, Knop FK, Vilsbøll T. A Pharmacological and Clinical Overview of Oral Semaglutide for the Treatment of Type 2 Diabetes. Drugs. 2021;81(9):1003-1030. doi:10.1007/s40265-021-01499-w [CrossRef] [PubMed] [Google Scholar]
- Oramed Pharmaceuticals, Oramed technology. http://www.oramed.com/technology/. Accessed May 2018. [Google Scholar]
- Oramed Pharmaceuticals, Phase II Safety and Efficacy Study of Oral ORMD-0801 in Patients With Type 2 Diabetes Mellitus. https://clinicaltrials.gov/ct2/show/NCT02496000. Accessed April 2018. [Google Scholar]
- Leone-Bay A, Grant M, Greene S, et al. Evaluation of novel particles as an inhalation system for GLP-1. Diabetes Obes Metab. 2009;11(11):1050-1059. doi:10.1111/j.1463-1326.2009.01096.x [CrossRef] [Google Scholar]
- Marino MT, Costello D, Baughman R, et al. Pharmacokinetics and pharmacodynamics of inhaled GLP-1 (MKC253): proof-of-concept studies in healthy normal volunteers and in patients with type 2 diabetes. Clin Pharmacol Ther. 2010;88(2):243-250. doi:10.1038/clpt.2010.85 [CrossRef] [PubMed] [Google Scholar]
- Henry RR, Rosenstock J, Logan DK, Alessi TR, Luskey K, Baron MA. Randomized trial of continuous subcutaneous delivery of exenatide by ITCA 650 versus twice-daily exenatide injections in metformin-treated type 2 diabetes [published correction appears in Diabetes Care. 2014 Jan;37(1):312. Dosage error in article text]. Diabetes Care. 2013;36(9):2559-2565. doi:10.2337/dc12-2410 [CrossRef] [PubMed] [Google Scholar]
- Luskey K, McNally J, Dahms J, Alessi T. Continuous subcutaneous delivery of exenatide via ITCA 650 lowers plasma glucose, HbA1c and reduces weight in a 28-day phase 1b study in type 2 diabetes. Abstract presented at the Ninth Annual Diabetes Technology Meeting, 5–7 November 2009, San Francisco, California [Google Scholar]
- Choe HJ, Cho YM. Peptidyl and Non-Peptidyl Oral Glucagon-Like Peptide-1 Receptor Agonists. Endocrinol Metab (Seoul). 2021;36(1):22-29. doi:10.3803/EnM.2021.102 [CrossRef] [PubMed] [Google Scholar]
- Min T, Bain SC. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther. 2021;12(1):143-157. doi:10.1007/s13300-020-00981-09 [CrossRef] [PubMed] [Google Scholar]
- Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules. 2022;27(13):4315. Published 2022 Jul 5. doi:10.3390/molecules27134315 [CrossRef] [PubMed] [Google Scholar]
- Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355-366. doi:10.1016/S2213-8587(17)30085-2 [CrossRef] [Google Scholar]
- Ludvik B, Giorgino F, Jódar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021;398(10300):583-598. doi:10.1016/S0140-6736(21)01443-4 [CrossRef] [Google Scholar]
- Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre,phase3 trial. Lancet. 2021;398(10313):1811-1824. doi:10.1016/S0140-6736(21)02188-7 [CrossRef] [Google Scholar]
- Nauck MA, D'Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21(1):169. Published 2022 Sep 1. doi:10.1186/s12933-022-01604-7 [CrossRef] [Google Scholar]
- Urva S, Quinlan T, Landry J, Martin J, Loghin C. Effects of Renal Impairment on the Pharmacokinetics of the Dual GIP and GLP-1 Receptor Agonist Tirzepatide. Clin Pharmacokinet. 2021;60(8):1049-1059. doi:10.1007/s40262-021-01012-2 [CrossRef] [PubMed] [Google Scholar]
- Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med. 2021;385(6):503-515. doi:10.1056/NEJMoa2107519 [CrossRef] [PubMed] [Google Scholar]
- Dave CV, Kim SC, Goldfine AB, Glynn RJ, Tong A, Patorno E. Risk of Cardiovascular Outcomes in Patients With Type 2 Diabetes After Addition of SGLT2 Inhibitors Versus Sulfonylureas to Baseline GLP-1RA Therapy [published correction appears in Circulation. 2021 Feb 23;143(8):e744]. Circulation. 2021;143(8):770-779. doi:10.1161/CIRCULATIONAHA.120.047965 [CrossRef] [PubMed] [Google Scholar]
- Karagiannis T, Avgerinos I, Liakos A, et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. 2022;65(8):1251-1261. doi:10.1007/s00125-022-05715-4 [CrossRef] [PubMed] [Google Scholar]
- Bednarz K, Kowalczyk K, Cwynar M, et al. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int J Mol Sci. 2022;23(8):4334. Published 2022 Apr 14. doi:10.3390/ijms23084334 [CrossRef] [Google Scholar]
- Cena H, Chiovato L, Nappi RE. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J Clin Endocrinol Metab. 2020;105(8):e2695-e2709. doi:10.1210/clinem/dgaa285 [CrossRef] [PubMed] [Google Scholar]
- Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HH. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30(7):1407-1414. doi:10.1161/ATVBAHA.110.206425 [CrossRef] [PubMed] [Google Scholar]
- Ramos H, Bogdanov P, Sampedro J, Huerta J, Simó R, Hernández C. Beneficial Effects of Glucagon-Like Peptide-1 (GLP-1) in Diabetes-Induced Retinal Abnormalities: Involvement of Oxidative Stress. Antioxidants (Basel). 2020;9(9):846. Published 2020 Sep 10. doi:10.3390/antiox909084 [CrossRef] [Google Scholar]
- Yang Y, Zhang J, Ma D, et al. Subcutaneous administration of liraglutide ameliorates Alzheimer-associated tau hyperphosphorylation in rats with type 2 diabetes. J Alzheimers Dis. 2013;37(3):637-648. doi:10.3233/JAD-130491 [CrossRef] [Google Scholar]
- Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is Neuroprotective and Reduces α-Synuclein Levels in the Chronic MPTP Mouse Model of Parkinson's Disease. J Parkinsons Dis. 2019;9(1):157-171. doi:10.3233/JPD-181503 [CrossRef] [Google Scholar]
- Ceriello A, Stoian AP, Rizzo M. COVID-19 and diabetes management: What should be considered?. Diabetes Res Clin Pract. 2020;163:108151. doi:10.1016/j.diabres.2020.108151 [CrossRef] [Google Scholar]
- Khunti K, Knighton P, Zaccardi F, et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol. 2021;9(5):293-303. doi:10.1016/S2213-8587(21)00050-4 [CrossRef] [Google Scholar]
- Zhang Y, Sun B, Feng D, et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature. 2017;546(7657):248-253. doi:10.1038/nature22394 [CrossRef] [PubMed] [Google Scholar]
- Barnett AH. Lixisenatide: evidence for its potential use in the treatment of type 2 diabetes. Core Evid. 2011;6:67-79. doi:10.2147/CE.S15525. [CrossRef] [Google Scholar]
- Hu C P, Cheng N, Yang F,Su Z D. Research progress on GLP-1R structure and function and small molecule drug screening[J]. Biotechnology Bulletin,2017,33(02):30-40. DOI: 10.13560/j.cnki. biotech. bull.1985.2017.02.005. [Google Scholar]
- Sun Yu-Fang, Zong Hui, Guo Shi-Yu, et al. Research progress of recombinant Fc fusion protein analogs[J]. Chinese clinical medicine, 2022, 29(1): 97-104. doi:10.12025/j.issn.1008-6358.2022.20210113. [Google Scholar]
- Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26(4):287-296. doi:10.1002/dmrr.1080 [CrossRef] [Google Scholar]
- CHEN Chong, WEI Shanshan, WANG Songhua, et al. Role of sodium channels on insulin secretion in pancreatic islet βcells[J]. Life Science Research, 2018, 22(1): 74-79. doi:10.16605/j.cnki.1007-7847. 2018.01.012. [Google Scholar]
- Liu Y, Tian Xubiao, Han Y. Mechanism of glucose-dependent stimulation of insulin secretion by GLP-1 receptor agonists in pancreatic β -cells[J]. International Journal of Endocrinology and Metabolism,2015,35(1):66-69. doi:10.3760/cma.j. issn.1673-4157.2015.01.017. [Google Scholar]
- MacDonald PE, Wheeler MB. Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia. 2003;46(8):1046-1062. doi:10.1007/s00125-003-1159-8 [CrossRef] [PubMed] [Google Scholar]
- Chen Hanbei, Lin Ning, Su Qing. Study on the glucose concentration-dependent hypoglycemic mechanism of GLP-1 analogs[J]. Chinese Journal of Modern Medicine,2013,23(15):15-18. [Google Scholar]
- Degn KB, Brock B, Juhl CB, et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes. 2004;53(9):2397-2403. doi:10.2337/diabetes.53.9.2397 [CrossRef] [PubMed] [Google Scholar]
- Chen YH, Huang CN, Cho YM, et al. Efficacy and safety of dulaglutide monotherapy compared with glimepiride in East-Asian patients with type 2 diabetes in a multicentre, double-blind, randomized, parallel-arm, active comparator, phase III trial. Diabetes Obes Metab. 2018;20(9):2121-2130. doi:10.1111/dom.13340 . [CrossRef] [Google Scholar]
- MuskietMHA, Tonneijck L, Huang Y, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018;6(11):859-869. doi:10.1016/S2213-8587(18)30268-7. [CrossRef] [Google Scholar]
- Mann JFE, Hansen T, Idorn T, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials. Lancet Diabetes Endocrinol. 2020;8(11):880-893. doi:10.1016/S2213-8587(20)30313-2 [CrossRef] [Google Scholar]
- Fang Junyan, Ding Feng, Li Xuezhu. Clinical application value of glucagon-like peptide-1-related drugs in patients with diabetes mellitus combined with chronic kidney disease[J]. Shanghai Medicine,2022,43(3):3-7,11. doi:10.3969/j.issn.1006-1533.2022.03.002. [Google Scholar]
- Li L, Shen J, Bala MM, et al. Incretin treatment and risk of pancreatitis in patients with type 2 diabetes mellitus: systematic review and meta-analysis of randomised and non-randomised studies. BMJ. 2014;348:g2366. Published 2014 Apr 15. doi:10.1136/bmj.g2366 [CrossRef] [Google Scholar]
- Wang T, Wang F, Gou Z, et al. Using real-world data to evaluate the association of incretin-based therapies with risk of acute pancreatitis: a meta-analysis of 1,324,515 patients from observational studies. Diabetes Obes Metab. 2015;17(1):32-41. doi:10.1111/dom.12386 [CrossRef] [Google Scholar]
- Lee PH, Stockton MD, Franks AS. Acute pancreatitis associated with liraglutide. Ann Pharmacother. 2011;45(4):e22. doi:10.1345/aph.1P714 [Google Scholar]
- Yu X, Tang H, Huang L, Yang Y, Tian B, Yu C. Exenatide-induced chronic damage of pancreatic tissue in rats. Pancreas. 2012;41(8):1235-1240. doi:10.1097/MPA.0b013e31824e67a3 [CrossRef] [PubMed] [Google Scholar]
- Su B, Sheng H, Zhang M, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015;48(1):107-115. doi:10.1007/s12020-014-0361-4 [CrossRef] [PubMed] [Google Scholar]
- Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology. 2011;141(1):150-156. doi:10.1053/j.gastro.2011.02.018 [CrossRef] [Google Scholar]
- Labuzek K, Kozłowski M, Szkudłapski D, Sikorska P, Kozłowska M, Okopień B. Incretin-based therapies in the treatment of type 2 diabetes--more than meets the eye?. Eur J Intern Med. 2013;24(3):207-212. doi:10.1016/j.ejim.2013.01.009 [CrossRef] [Google Scholar]
- Funch D, Gydesen H, Tornøe K, Major-Pedersen A, Chan KA. A prospective, claims-based assessment of the risk of pancreatitis and pancreatic cancer with liraglutide compared to other antidiabetic drugs. Diabetes Obes Metab. 2014;16(3):273-275. doi:10.1111/dom.12230 [CrossRef] [PubMed] [Google Scholar]
- Zhao HJ, Hong TJ. Glucagon-like peptide-1 analogs and pancreatic safety[J]. International Journal of Endocrinology and Metabolism,2015,35(5):319-323. doi:10.3760/cma.j.issn.1673-4157.2015.05.008. [Google Scholar]
- Enebo LB, Berthelsen KK, Kankam M, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2ꞏ4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet. 2021;397(10286):1736-1748. doi:10.1016/S0140-6736(21)00845-X [CrossRef] [Google Scholar]
- Young MA, Wald JA, Matthews JE, et al. Clinical pharmacology of albiglutide, GLP-1 receptor agonist. Postgrad Med. 2014;126(7):84-97. doi:10.3810/pgm.2014.11.2836 [CrossRef] [PubMed] [Google Scholar]
- Rosenstock J, Allison D, Birkenfeld AL, et al. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults With Type 2 Diabetes Uncontrolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA. 2019;321(15):1466-1480. doi:10.1001/jama.2019.2942 [CrossRef] [PubMed] [Google Scholar]
- Pratley R, Amod A, Hoff ST, et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial [published correction appears in Lancet. 2019 Jul 6;394(10192):e1]. Lancet. 2019;394(10192):39-50. doi:10.1016/S0140-6736(19)31271-1 [Google Scholar]
- Zinman B, Aroda VR, Buse JB, et al. Efficacy, Safety, and Tolerability of Oral Semaglutide Versus Placebo Added to Insulin With or Without Metformin in Patients With Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care. 2019;42(12):2262-2271. doi:10.2337/dc19-0898 [CrossRef] [PubMed] [Google Scholar]
- Rosenstock J, Allison D, Birkenfeld AL, et al. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults With Type 2 Diabetes Uncontrolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA. 2019;321(15):1466-1480. doi:10.1001/jama.2019.2942 [CrossRef] [PubMed] [Google Scholar]
- Aroda VR, Rosenstock J, Terauchi Y, et al. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison With Placebo in Patients With Type 2 Diabetes. Diabetes Care. 2019;42(9):1724-1732. doi:10.2337/dc19-0749 [CrossRef] [PubMed] [Google Scholar]
- Lau J, Bloch P, Schäffer L, et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58(18):7370-7380. doi:10.1021/acs.jmedchem.5b00726 [CrossRef] [Google Scholar]
- Granhall C, Donsmark M, Blicher TM, et al. Safety and Pharmacokinetics of Single and Multiple Ascending Doses of the Novel Oral Human GLP-1 Analogue, Oral Semaglutide, in Healthy Subjects and Subjects with Type 2 Diabetes. Clin Pharmacokinet. 2019;58(6):781-791. doi:10.1007/s40262-018-0728 [CrossRef] [PubMed] [Google Scholar]
- Xia Shan. Preliminary study of dissociable human glucagon-like peptide-1 fusion protein with human serum albumin[D]. Anhui:Anhui University, 2015. doi:10.7666/d.Y2804454. [Google Scholar]
- DONG Jiaxiao, SONG Yahong, LI Xiuzheng, et al. Structural diversity and pharmacological effects of cyclic peptides[J]. Hebei Medicine,2022,44(19): 3009-3013,3019. doi:10.3969/j.issn.1002-7386.2022. 19.032. [Google Scholar]
- Chen, Kai. Head and tail cyclization strategy for the construction of enzymatically stable helical bicyclic peptides and its application[D]. Anhui: Anhui University, 2022. [Google Scholar]
- Saxena AR, Gorman DN, Esquejo RM, et al. Danuglipron (PF-06882961) in type 2 diabetes: a randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nat Med. 2021;27(6):1079-1087. doi:10.1038/s41591-021-01391-w [CrossRef] [PubMed] [Google Scholar]
- Samms RJ, Coghlan MP, Sloop KW. How May GIP Enhance the Therapeutic Efficacy of GLP-1?. Trends Endocrinol Metab. 2020;31(6):410-421. doi:10.1016/j.tem.2020.02.006 [CrossRef] [Google Scholar]
- Thomas MK, Nikooienejad A, Bray R, et al. Dual GIP and GLP-1 Receptor Agonist Tirzepatide Improves Beta-cell Function and Insulin Sensitivity in Type 2 Diabetes. J Clin Endocrinol Metab. 2021;106(2):388-396. doi:10.1210/clinem/dgaa863 [CrossRef] [PubMed] [Google Scholar]
- Mentis N, Vardarli I, Köthe LD, et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes. 2011;60(4):1270-1276. doi:10.2337/db10-1332 [CrossRef] [PubMed] [Google Scholar]
- Yang Zexin, Wang Junchao. Advances in the use of glucagon-like peptide 1 receptor agonists in obese PCOS patients with infertility[J]. International Journal of Reproductive Health/Family Planning, 2021,40(5):436-440. doi:10.12280/gjszjk.20210103. [Google Scholar]
- Li L, Zhang ZF, Holscher C, Gao C, Jiang YH, Liu YZ. (Val ⁸) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur J Pharmacol. 2012;674(2-3):280-286. doi:10.1016/j.ejphar.2011.11.005 [CrossRef] [Google Scholar]
- McClean PL, Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease. Neuropharmacology. 2014;76 Pt A:57-67. doi:10.1016/j.neuropharm.2013.08.005 [Google Scholar]
- Jayaraman A, Pike CJ. Alzheimer's disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr Diab Rep. 2014;14(4):476. doi:10.1007/s11892-014-0476-2 [CrossRef] [PubMed] [Google Scholar]
- Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain. 2013;136(Pt 2):374-384. doi:10.1093/brain/aws009 [Google Scholar]
- Wu H. M. Analysis of the effect of intestinal microorganisms on the effect of GLP-1 receptor agonists in the treatment of diabetes mellitus[J]. New World of Diabetes,2022,25(19):122-125. doi:10.16658/j.cnki.1672-4062.2022.19.122. [Google Scholar]
- Li Y, Yang X, Ma L, et al. Effects of GLP-1 receptor agonist combined with probiotics on intestinal flora, oxidative stress and glucolipid metabolism in diabetic patients[J]. Hebei Medicine,2021,43(4):522 526. doi:10.3969/j.issn.1002-7386.2021.04.009. [Google Scholar]
- Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia. 1998;41(3):271-278. doi:10.1007/s001250050903 [CrossRef] [PubMed] [Google Scholar]
- Davies MJ, Bain SC, Atkin SL, et al. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA RENAL): A Randomized Clinical Trial. Diabetes Care. 2016;39(2):222-230. doi:10.2337/dc14-2883 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.