Open Access
BIO Web Conf.
Volume 61, 2023
6th International Conference on Frontiers of Biological Sciences and Engineering (FBSE 2023)
Article Number 01021
Number of page(s) 5
Published online 21 June 2023
  • DU B-X, QIN Y, JIANG Y-F, et al. Compound-protein interaction prediction by deep learning: Databases, descriptors and models [J]. DRUG DISCOVERY TODAY, 2022, 27(5): 1350-66. [CrossRef] [PubMed] [Google Scholar]
  • Y. HAN, L. CHENG, W. SUN. Analysis of Protein-Protein Interaction Networks through Computational Approaches [J]. PROTEIN AND PEPTIDE LETTERS, 2020, 27(4): 265-78. [CrossRef] [PubMed] [Google Scholar]
  • Z. DU, H. SU, W. WANG, et al. The trRosetta server for fast and accurate protein structure prediction [J]. NATURE PROTOCOLS, 2021, 16(12): 5634-51. [CrossRef] [PubMed] [Google Scholar]
  • L. HU, X. WANG, Y-A. HUANG, et al. A survey on computational models for predicting protein-protein interactions [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22(5): [Google Scholar]
  • M S. KHATUN, W.SHOOMBUATONG, M M.HASAN, et al. Evolution of Sequence-based Bioinformatics Tools for Protein-protein Interaction Prediction [J]. CURRENT GENOMICS, 2020, 21(6): 454-63. [CrossRef] [PubMed] [Google Scholar]
  • MEI L-C, HAO G-F, YANG G-F. Computational methods for predicting hotspots at protein-RNA interfaces [J]. WILEY INTERDISCIPLINARY REVIEWS-RNA, 2022, 13(2): [Google Scholar]
  • D. SARKAR, S. SAHA. Machine-learning techniques for the prediction of protein-protein interactions [J]. JOURNAL OF BIOSCIENCES, 2019, 44(4): [CrossRef] [Google Scholar]
  • C. SHI, J. CHEN, X. KANG, et al. Deep Learning in the Study of Protein-Related Interactions [J]. PROTEIN AND PEPTIDE LETTERS, 2020, 27(5): 359-69. [CrossRef] [PubMed] [Google Scholar]
  • O. SLATER, B. MILLER, M. KONTOYIANNI. Decoding Protein-protein Interactions: An Overview [J]. CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2020, 20(10): 855-82. [CrossRef] [PubMed] [Google Scholar]
  • D. SUN, S. LIU, X. GONG. Review of multimer protein-protein interaction complex topology and structure prediction* [J]. CHINESE PHYSICS B, 2020, 29(10): [Google Scholar]
  • Y. TABEI. Scalable Prediction of Compound-protein Interaction on Compressed Molecular Fingerprints [J]. MOLECULAR INFORMATICS, 2020, 39(1-2): [Google Scholar]
  • L. ZHONG, Z. MING, G. XIE, et al. Recent Advances on the Semi-Supervised Learning for Long Non-Coding RNA-Protein Interactions Prediction: A Review [J]. PROTEIN AND PEPTIDE LETTERS, 2020, 27(5): 385-91. [CrossRef] [PubMed] [Google Scholar]
  • P C T. SOUZA, R. ALESSANDRI, J. BARNOUD, et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics [J]. NATURE METHODS, 2021, 18(4): 382-+. [CrossRef] [PubMed] [Google Scholar]
  • RD. FINN, A. BATEMAN, J. CLEMENTS, et al. Pfam: the protein families database [J]. NUCLEIC ACIDS RESEARCH, 2014, 42(D1): D222-D30. [CrossRef] [PubMed] [Google Scholar]
  • B. LEWANDOWSKI, JW. WARD, et al. Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine [J]. SCIENCE, 2013, 339(6116): 189-93. [CrossRef] [PubMed] [Google Scholar]
  • L. Liu, PY. Gong, M. Tang, HK. Hu, YB. Zhang, CH. Liu. Advances in the study of novel coronavirus pneumonia based on proteomics technology[J]. Advances in Biochemistry and Biophysics, 2022, 49(10): 1848-1865. DOI:10.16476/j.pibb.2022.0029. [Google Scholar]
  • H. OULDALI, K. SARTHAK, T. ENSSLEN, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. NATURE BIOTECHNOLOGY, 2020, 38(2): 176-+. [CrossRef] [PubMed] [Google Scholar]
  • S. WANG, Z-Y TSUN, R L WOLFSON, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 [J]. SCIENCE, 2015, 347(6218): 188-94. [CrossRef] [PubMed] [Google Scholar]
  • J. MCCARTY, K. DELANEY, S. DANIELSEN, et al. Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10(8): 1644-52. [CrossRef] [Google Scholar]
  • M. BAEK, F. DIMAIO, I. ANISHCHENKO, et al. Accurate prediction of protein structures and interactions using a three-track neural network [J]. SCIENCE, 2021, 373(6557): 871-+. [CrossRef] [PubMed] [Google Scholar]
  • L. Jia, and Y. Luan, Multi-feature Fusion Method Based on Linear Neighborhood Propagation Predict Plant LncRNA-Protein Interactions. Interdisciplinary sciences, computational life sciences 14 (2022) 545-554. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.