Open Access
BIO Web Conf.
Volume 64, 2023
Agro-Bio-Technologies 2023 - Innovative Solutions for the Development of the Industry
Article Number 01018
Number of page(s) 8
Section Food Biotechnology
Published online 27 July 2023
  • M. Åkerlind, H. Volden, Standard feed valueH. Volden (Ed.), NorFor—The Nordic Feed Evaluation System, Wageningen Academic Publishers (2011), pp. 137-139 [CrossRef] [Google Scholar]
  • D.M. Allen, The relationship between variable selection and data augmentation and a method for prediction Technometrics, 16 (1974), pp. 125-127 [Google Scholar]
  • B.G. Cottyn, J.V. Aerts, J.M. Vanacker, R.J. Moermans, F.X. Buysse, The prediction of the net energy value of compound feedstuffs for dairy cattle Anim. Feed Sci. Technol., 11 (1984), pp. 137-147 [CrossRef] [Google Scholar]
  • J.L. De Boever, B.G. Cottyn, J.M. Vanacker, C.V. Boucqué, An improved enzymatic method by adding gammanase to determine digestibility and predict energy value of compound feeds and raw materials for cattle Anim. Feed Sci. Technol., 47 (1994), pp. 1-18 [CrossRef] [Google Scholar]
  • European Commission, Annex IV to Regulation (EC) No 767/2009 on permitted tolerances for the compositional labelling of feed materials or compound feed as referred to in Article 11(5) Off. J., L229 (2010), pp. 1-130 [Google Scholar]
  • Tultabayeva, T. C., Chomanov, U. C., Tultabayev, M. C., Zhumaliyeva, G. E., Kenenbay, G. S., Shoman, A. Y., Shoman, A. K. Synthesis, Characterization and Physical Properties of Polyunsaturated Fatty Acids and Co Zero-Valent Nanoparticles/Polyunsaturated Fatty Acids. Journal of Nanostructures, 2022; 12(4): 1049-1058. doi: 10.22052/JNS.2022.04.025 [Google Scholar]
  • S. Giger-Reverdin, J. Aufrère, D. Sauvant, C. Demarquilly, M. Vermorel rediction of the energy values of compound feeds for ruminants, Anim. Feed Sci. Technol., 48 (1994), pp. 73-98, [CrossRef] [Google Scholar]
  • ISO (International Organization for Standardization), Animal feeding stuffs— Determination of amylase-treated neutral detergent fiber content (aNDF). Standard no. 16472:2006, ISO (2006) [Google Scholar]
  • D. Sauvant, L. Delaby, P. Nozière, INRA Feeding System for Ruminant Wageningen Academic Publishers (2018) [Google Scholar]
  • Kizatova M.E., Sultanova M.Zh., Borovskij A.Yu., Tultabaev M.Ch., Sulejmenov D.Zh. Issledovanie himicheskogo sostava opytnyh obrazcov ekstrudirovannyh othodov posleuborochnoj obrabotki lna (ekstrudatov), MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN TARAZ REGIONAL UNIVERSITY named after M.Kh. DULATY MECHANICS & TECHNOLOGIES Scientific Journal Published since January 1994 Published four times a year ISSN 2308-9865 № 3 (69) July-September 2020. [Google Scholar]
  • D. Sauvant, J.M. Perez, G. Tran (Eds.), Tables de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage (porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons), INRA Editions (2002), pp. 43-50 [Google Scholar]
  • Kabylda, A., Serikbay, G., Myktabaeva, M., Atanov, S., Muslimov, N., & Tultabayev, M. (2022). Development of gluten-free pasta products based on multivariate analysis. Eastern-European Journal of Enterprise Technologies, 5(11 (119), 6–11. [CrossRef] [Google Scholar]
  • N.R. St-Pierre, Reassessment of biases in predicted nitrogen flows to the duodenum by NRC 2001, J. Dairy Sci., 86 (2003), pp. 344-350, [CrossRef] [Google Scholar]
  • Tultabaev, Mukhtar and Chomanov, Urishbay and Tultabaeva, Tamara and Shoman, Aruzhan and Dodaev, Kuchkar and Azimov, Utkir and Zhumanova, Umyt, Identifying Patterns in the Fatty-Acid Composition of Safflower Depending on Agroclimatic Conditions (April 30, 2022). Eastern-European Journal of Enterprise Technologies, 2(11 (116), 23–28, 2022 doi: 10.15587/1729-4061.2022.255336 [CrossRef] [Google Scholar]
  • M.R. Weisbjerg, T. Hvelplund, The use of enzymatic solubility for the prediction of organic matter digestibility of compounded feedstuff Proc. In Vitro and In Vivo Methods Used in Experiments on Digestion Processes and Feed Evaluation, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences (1996), pp. 99-102 [Google Scholar]
  • Kim HJ, Bae YC, Park RW, Choi SW, Cho SH, Choi YS, Lee WJ.. Bone protecting effect of safflower seeds in ovariectomized rats. 2002 Calcif Tissue Int 71: 88-94 [CrossRef] [PubMed] [Google Scholar]
  • Cho SH, Lee HL, Kim TH, Choi SW, Lee WJ, Choi YS. Effects of defatted safflower seed extract and phenolic compounds in diet on plasma and liver lipid in ovariectomized rats fed high-cholesterol diets. 2004. J Nutr Sci Vitaminol 50: 32-37 [CrossRef] [PubMed] [Google Scholar]
  • Zhang HL, Nagatsu A, Watanabe T, Sakakibara J, Okuyama H. Antioxidative compounds isolated from safflower (Carthamus tinctorious L.) oil cake. 1997. Chem Pharm Bull 45: 1910-1914 [CrossRef] [PubMed] [Google Scholar]
  • Y. Zhumaliyeva, Gulzhan and Chomanov, Urishbay and Tultabaeva, Tamara and Tultabayev, Mukhtar and Kasymbek, Rabiga, Formation of Processes of Intensification of Crop Growth For The Formation of Business Structures (2020). Available at SSRN: or [Google Scholar]
  • Kawashima S, Hayashi M, Takii T, Kimura H, Ahang HL, Nagatsu A, Sakakibara J, Murata K, Oomoto Y, Onozaki K. 1998. Serotonin derivative, N-(pcoumaroyl)serotonin, inhibits the production of TNF-α, IL-1α, IL-Iβ, and IL-6 by endotoxin stimulated human blood monocytes. J Interferon Cytokine Res 18: 423428 [CrossRef] [PubMed] [Google Scholar]
  • Kang GH, Chang EJ, Choi SW. Antioxidative activity of phenolic compounds in roasted safflower seeds. 1999. J Korean Soc Food Sci Nutr 4: 221-225 [Google Scholar]
  • Chomanov, Urishbay Ch. et al. Development of Industrial and Agricultural Enterprises on the Basis of Innovation Management. Journal of Advanced Research in Law and Economics, [S.l.], v. 10, n. 8, p. 2297–2304, dec. 2019. ISSN 2068-696X. Available at: <>. Date accessed: 05 june 2023. doi: [Google Scholar]
  • Roh JS, Sun WS, Oh SU, Lee JI, Oh WT, Kim JH. In vitro antioxidant activity of safflower (Carthamus tinctorious L.) seeds. 1999. Food Sci Biotechnol 8: 88-92 [Google Scholar]
  • Bae SJ, Shim SM, Park YJ, Lee JY, Chang EY, Choi SW. Cytotoxicity of phenolic compounds isolated from seeds of safflower (Carthamus tinctorius L.) on cancer cell lines. 2002. Food Sci Biotechnol 11: 140-146 [Google Scholar]
  • Takii T, Hayashi M, Hiroma H, Chiba T, Kawashima S, Zhang HL, Nagatsu A, Sakakibara J, Onozaki K. Serotonin derivative, N-(p-coumaroyl)serotonin, isolated from safflower (Carthamus tinctorious L.) oil cake augments the proliferation of normal human and mouse fibroblasts in synergy with basic fibroblast growth factor of epidermal growth factor (EGF). 1999. J Biochem 125: 910-915 [CrossRef] [PubMed] [Google Scholar]
  • Roh JS, Han JY, Kim JH, Hwang JK. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. 2004. Biol Pharm Bull 27: 1976-1978 [CrossRef] [PubMed] [Google Scholar]
  • Naczk M, Shahidi F. Phenolic compounds in plant foods: chemistry and health benefits. 2003. Nutraceuticals & Food 8: 200-218 [Google Scholar]
  • Chomanov, Urishbay and M. Temirbekov, Nurlan and S. Kenenbay, Gul’mira and Tultabaeva, Tamara and C. Omirzhanova, Bakhytzhan and Tultabayev, Mukhtar, Reduction Interpolation Function for Determining The Rheological Properties of Bile In Farm Animals To Increase The Entrepreneurial Activity of The Agricultural Sector (2020). Available at SSRN: or [Google Scholar]
  • Macheix JJ, Fleurit A, Billot J. Fruit Phenolics. 1990. CRC Press, Boca Raton. p 237245 [Google Scholar]
  • Lee JY, Park KS, Choi SW. Changes in flavonoid contents of safflower leaf during growth and processing. 2004 J Food Sci Nutr 10: 1-5 [Google Scholar]
  • A. A. Amantaeva*, N. B. Batyrbaeva SAFLOR – CENNAYa KORMOVAYa KULTURA, Vestnik Nacionalnoj inzhenernoj akademii Respubliki Kazahstan. 2021. № 2 (80), [Google Scholar]
  • Natarajan S, Ponnusamy V. A review on the applications of ultrasound in food processing. Mater Today Proc. (2020) 10:1–4. doi: 10.1016/j.matpr.2020.09.516. [Google Scholar]
  • Chemat F, Zill-E-Huma, Khan MK. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem. (2011) 18:813–35. doi: 10.1016/j.ultsonch.2010.11.023. [CrossRef] [PubMed] [Google Scholar]
  • Delmas H, Barthe L. Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. In: Gallego J, Karl F, Juan A, editors. Power Ultrasonics: Applications of High-Intensity Ultrasound. Cambridge: Elsevier Ltd. (2015). p. 757–91. doi: 10.1016/B978-1-78242-028-6.00025-9. [Google Scholar]
  • Sergeeva A.G. Rukovodstvo po metodam issledovaniya, tehnohimicheskomu kontrolyu i uchetu proizvodstva v maslozhirovoj promyshlennosti / Pod obshej redakciej d.t.n.– L., VNIIZh, 1974, t. VI. – 338 s. [Google Scholar]
  • Vasilenko, V. N. Mathematical modeling of the process of pressing oil-bearing raw materials / V.N. Vasilenko, L.N. Frolova, 18 N.A. Mikhailova, D.A. Tarkaeva, M.I. Slyusarev // Storage and processing of agricultural raw materials. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.