Open Access
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
Article Number 01033
Number of page(s) 4
Section Viticulture
Published online 06 December 2023
  • V. Marinoudi, C.G. Sørensen, S. Pearson, D. Bochtis. Robotics and labour in agriculture. A context consideration. Biosyst. Eng. 184, 111–121, DOI: 10.1016/j.biosystemseng.2019.06.013 (2019) [CrossRef] [Google Scholar]
  • S.G. Vougioukas. Agricultural robotics. Annu. Rev. Control Robot Auton. Syst. 2, 365–392, DOI: 10.1146/annurev-control-053018-023617 (2019) [CrossRef] [Google Scholar]
  • A. Matese, S.F. Di Gennaro. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 7, 69–81, DOI: 10.2147/IJWR.S69405. (2015) [CrossRef] [Google Scholar]
  • V. Saiz-Rubio, F. Rovira-Mas. From smart farming towards agriculture 5.0: A review on crop data management. Agron. 10, 207, DOI: 10.3390/agronomy10020207. (2020) [CrossRef] [Google Scholar]
  • G. Ozdemir, A. Sessiz, F.G. Pekitkan. Precision Viticulture tools to production of high quality grapes. Scientific Papers 61, 209–218 (2017) [Google Scholar]
  • Directive 2009/128/EC of the European Parliament and of the Council of 21st October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. OJ L 309. 24th November 2009, 71–86. Available online: Accessed on 06th May 2023 [Google Scholar]
  • F. Giametta, L. Brunetti, R. Romaniello, B. Bianchi. Ecological efficiency assessment of a specific machine for distribution of pesticides in vineyards of Apulian region. WSEAS Trans. Environ. Dev. ISSN:1790-5079.2224-3496 11, Art. 24, 219–227 (2015) [Google Scholar]
  • A. Miranda-Fuentes, P. Marucco, E.J. González-Sánchez, E. Gil, M. Grella, P. Balsari. Developing strategies to reduce spray drift in pneumatic spraying in vineyards: assessment of the parameters affecting droplet size in pneumatic spraying. Sci. Total Environ 616, 805–815, DOI: 10.1016/j.scitotenv.2017.10.242. (2018) [CrossRef] [Google Scholar]
  • L. Burketova, L. Trda, P.G. Ott., O. Valentova. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33, 994–1004, DOI: 10.1016/j.biotechadv.2015.01.004 (2015) [CrossRef] [Google Scholar]
  • A.A. Borges, L.M. Sandalio. Induced resistance for plant defense. Front. Plant Sci. 6, 109, DOI: 10.3389/fpls.2015.00109 (2015) [CrossRef] [Google Scholar]
  • A. Jamiołkowska. Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agron. 10, 173, DOI: 10.3390/agronomy10020173 (2020) [CrossRef] [Google Scholar]
  • G.C. Bora, P. Mistry, D. Lin. Evaluation of sensors for sensing characteristics and field of view for variable rate technology in grape vineyards in North Dakota. J. Appl. Hortic. 17, 96–100, DOI: 10.37855/ jah.2015.v17i02.19 (2015) [CrossRef] [Google Scholar]
  • K. Späti, R. Huber, R. Finger. Benefits of increasing information accuracy in variable rate technologies. Ecol. Econ. 185, 107047, DOI: 10.1016/j.ecolecon.2021.107047 (2021) [CrossRef] [Google Scholar]
  • J. Campos, M. Gallart, J. Llop, P. Ortega, R. Salcedo, E. Gil. On-farm evaluation of prescription map-based variable rate application of pesticides in vineyards. Agron. 10, 102, DOI: 10.3390/agronomy10010102 (2020) [CrossRef] [Google Scholar]
  • R. Hołownicki, G. Doruchowski, W. Świechowski, A. Godyń, P.J. Konopacki. Variable air assistance system for orchard sprayers; concept, design and preliminary testing. Biosyst. Eng. 163, 134–149, DOI: 10.1016/j.biosystemseng.2017.09.004 (2017) [CrossRef] [Google Scholar]
  • B. Sahu, S. Chatterjee, S. Mukherjee, C. Sharma. Tools of precision agriculture: A review. Int. J. Chem. Stud. 7(6), 2692–2697 (2019) [Google Scholar]
  • I. Abbas, J. Liu, M. Faheem, R.S. Noor, S.A. Shaikh, K.A. Solangi, S.M. Raza. Sens. Actuator. 316, 112265, DOI: 10.1016/j.sna.2020.112265. (2020) [CrossRef] [Google Scholar]
  • R.Y. Van Der Weide, P.O. Bleeker, V.T.J.M. Achten, L.A.P. Lotz, F. Fogelberg, B. Melander. Innovation in mechanical weed control in crop rows. Weed Res. 48, 215–224, DOI: 10.1111/j.1365-3180.2008.00629.x. (2008) [CrossRef] [Google Scholar]
  • S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C.H. Santos, E. Pekkeriet. Agricultural robotics for field operations. Sens. 20, 2672, DOI: 10.3390/s20092672. (2020) [CrossRef] [Google Scholar]
  • Accessed on 06th May 2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.