Open Access
Issue
BIO Web Conf.
Volume 68, 2023
44th World Congress of Vine and Wine
Article Number 02034
Number of page(s) 6
Section Oenology
DOI https://doi.org/10.1051/bioconf/20236802034
Published online 22 November 2023
  • H. Piao et al., ‘Insights into the bacterial community and its temporal succession during the fermentation of wine grapes’, Front. Microbiol. 6, Aug. 2015, doi:10.3389/fmicb.2015.00809 [CrossRef] [Google Scholar]
  • D. Liu, J.-L. Legras, P. Zhang, D. Chen, and K. Howell, ‘Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine’, Int. J. Food Microbiol. 338, 108983, Jan. 2021, doi:10.1016/j.ijfoodmicro.2020.108983 [CrossRef] [Google Scholar]
  • M. Böhmer et al., ‘Comparison of microbial diversity during two different wine fermentation processes’, FEMS Microbiol. Lett. 367, 18, 150, Sep. 2020, doi:10.1093/femsle/fnaa150 [CrossRef] [Google Scholar]
  • I. Stefanini and D. Cavalieri, ‘Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties’, Front. Microbiol. 9, 991, May 2018, doi:10.3389/fmicb.2018.00991 [CrossRef] [Google Scholar]
  • E. Bolyen et al., ‘Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2’, Nat. Biotechnol. 37, 8, 852857, Aug. 2019, doi:10.1038/s41587-019-0209-9 [Google Scholar]
  • P.D. Schloss et al., ‘Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities’, Appl. Environ. Microbiol. 75, 23, 7537–7541, Dec. 2009, doi:10.1128/AEM.01541-09 [CrossRef] [PubMed] [Google Scholar]
  • P.J. McMurdie and S. Holmes, ‘phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data’, PLoS ONE 8, 4, e61217, Apr. 2013, doi:10.1371/journal.pone.0061217 [CrossRef] [PubMed] [Google Scholar]
  • A. Klindworth et al., ‘Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies’, Nucleic Acids Res. 41, 1, e1–e1, Jan. 2013, doi:10.1093/nar/gks808 [CrossRef] [PubMed] [Google Scholar]
  • S. Andrews, ‘FastQC: A Quality Control Tool for High Throughput Sequence Data’. 2010. [Online]. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Google Scholar]
  • M. Martin, ‘Cutadapt removes adapter sequences from high-throughput sequencing reads’, EMBnet.journal 17, 1, 10, May 2011, doi:10.14806/ej.17.1.200 [CrossRef] [Google Scholar]
  • B.J. Callahan, P.J. McMurdie, M.J. Rosen, A.W. Han, A.J.A. Johnson, and S.P. Holmes, ‘DADA2: High-resolution sample inference from Illumina amplicon data’, Nat. Methods 13, 7, 581–583, Jul. 2016, doi:10.1038/nmeth.3869 [CrossRef] [PubMed] [Google Scholar]
  • N.A. Bokulich et al., ‘Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin’, Microbiome 6, 1, 90, Dec. 2018, doi:10.1186/s40168-018-0470-z [CrossRef] [PubMed] [Google Scholar]
  • C. Quast et al., ‘The SILVA ribosomal RNA gene database project: improved data processing and web-based tools’, Nucleic Acids Res. 41, D1, D590–D596, Nov. 2012, doi:10.1093/nar/gks1219 [CrossRef] [PubMed] [Google Scholar]
  • N.A. O’Leary et al., ‘Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation’, Nucleic Acids Res. 44, D1, D733–D745, Jan. 2016, doi:10.1093/nar/gkv1189 [CrossRef] [PubMed] [Google Scholar]
  • J. Budis et al., ‘SnakeLines: integrated set of computational pipelines for sequencing reads’, 2021, doi:10.48550/ARXIV.2106.13649 [Google Scholar]
  • J. Köster and S. Rahmann, ‘Snakemake—a scalable bioinformatics workflow engine’, Bioinformatics 28, 19, 2520–2522, Oct. 2012, doi:10.1093/bioinformatics/bts480 [CrossRef] [PubMed] [Google Scholar]
  • R Core Team, ‘R Statistical software’. 2023. [Online]. Available: https://www.R-project.org/ [Google Scholar]
  • K. Wright, ‘Pals: Color Palettes, Colormaps, and Tools to Evaluate Them’. 2021. [Online]. Available: https://kwstat.github.io/pals/ [Google Scholar]
  • Z. Sun et al., ‘Challenges in benchmarking metagenomic profilers’, Nat. Methods 18, 6, 618–626, Jun. 2021, doi:10.1038/s41592-021-01141-3 [CrossRef] [PubMed] [Google Scholar]
  • P.S. Nigam, ‘WINES | Production of Special Wines’, in Encyclopedia of Food Microbiology, Elsevier, 2014, 793–799. doi:10.1016/B978-0-12-384730-0.00358-X [CrossRef] [Google Scholar]
  • S.C. Morgan, M. Tantikachornkiat, C.M. Scholl, N.L. Benson, M.A. Cliff, and D.M. Durall, ‘The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines’, Int. J. Food Microbiol. 290, 1–14, Feb. 2019, doi:10.1016/j.ijfoodmicro.2018.09.020 [CrossRef] [Google Scholar]
  • H.-H. Kassemeyer and B. Berkelmann-Löhnertz, ‘Fungi of Grapes’, in Biology of Microorganisms on Grapes, in Must and in Wine, H. König, G. Unden, and J. Fröhlich, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, 61–87. doi:10.1007/978-3-540-85463-0_4 [CrossRef] [Google Scholar]
  • G. G. Khachatourians, ‘Biochemical and Modern Identification Techniques | Food Spoilage Flora’, in Encyclopedia of Food Microbiology, Elsevier, 2014, 244–249. doi:10.1016/B978-0-12-384730-0.00035-5 [CrossRef] [Google Scholar]
  • M. Dimakopoulou et al., ‘Phyllosphere grapevine yeast Aureobasidium pullulans reduces Aspergillus carbonarius (sour rot) incidence in wine-producing vineyards in Greece’, Biol. Control 46, 2, 158–165, Aug. 2008, doi:10.1016/j.biocontrol.2008.04.015 [CrossRef] [Google Scholar]
  • SHMU, ‘Slovak Hydrometeorological Institute: Historical precipitation data’. 2023. [Online]. Available: https://www.shmu.sk/en/?page=1&id=klimat_operativneudaje2&identif=11816&rok=2018&obdobie=1981-2010 [Google Scholar]
  • A.M. Bubeck et al., ‘Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection’, Sci. Rep. 10, 1, 13828, Aug. 2020, doi:10.1038/s41598-020-70535-8 [CrossRef] [Google Scholar]
  • S. Zhang, X. Chen, Q. Zhong, X. Zhuang, and Z. Bai, ‘Microbial Community Analyses Associated with Nine Varieties of Wine Grape Carposphere Based on High-Throughput Sequencing’, Microorganisms 7, 12, 668, Dec. 2019, doi:10.3390/microorganisms7120668 [CrossRef] [PubMed] [Google Scholar]
  • K.H. Steinkraus, ‘Wine’, in Encyclopedia of Microbiology, Elsevier, 2009, 138–143. doi:10.1016/B978-012373944-5.00127-9 [CrossRef] [Google Scholar]
  • C. Pinto et al., ‘Wine fermentation microbiome: a landscape from different Portuguese wine appellations’, Front. Microbiol. 6, Sep. 2015, doi:10.3389/fmicb.2015.00905 [CrossRef] [Google Scholar]
  • N.A. Bokulich, J.H. Thorngate, P.M. Richardson, and D.A. Mills, ‘Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate’, Proc. Natl. Acad. Sci. 111, no. 1, Jan. 2014, doi:10.1073/pnas.1317377110 [CrossRef] [Google Scholar]
  • C. Virdis, K. Sumby, E. Bartowsky, and V. Jiranek, ‘Lactic Acid Bacteria in Wine: Technological Advances and Evaluation of Their Functional Role’, Front. Microbiol. 11, 612118, Jan. 2021, doi:10.3389/fmicb.2020.612118 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.