Open Access
Issue
BIO Web Conf.
Volume 72, 2023
2023 International Conference on Food Science and Bio-medicine (ICFSB 2023)
Article Number 01009
Number of page(s) 4
Section Food Ingredients Application and Food Safety Identification
DOI https://doi.org/10.1051/bioconf/20237201009
Published online 08 November 2023
  • Bahadır Acıkara, Ö., Ilhan, M., Kurtul, E., Šmejkal, K., & Küpeli Akkol, E. (2019). Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorg Chem, 93, 103330. [CrossRef] [PubMed] [Google Scholar]
  • Folch, J., Busquets, O., Ettcheto, M., Sánchez-López, E., Pallàs, M., Beas-Zarate, C., Marin, M., Casadesus, G., Olloquequi, J., Auladell, C., & Camins, A. (2018). Experimental Models for Aging and their Potential for Novel Drug Discovery. Curr Neuropharmacol, 16(10), 1466-1483. [CrossRef] [PubMed] [Google Scholar]
  • Gore, A. V., Pillay, L. M., Venero Galanternik, M., & Weinstein, B. M. (2018). The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdiscip Rev Dev Biol, 7(3), e312. [CrossRef] [PubMed] [Google Scholar]
  • Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends Cell Biol, 28(6), 436-453. [CrossRef] [Google Scholar]
  • Herranz, N., & Gil, J. (2018). Mechanisms and functions of cellular senescence. J Clin Invest, 128(4), 1238-1246. [CrossRef] [PubMed] [Google Scholar]
  • Kudryavtseva, A. V., Krasnov, G. S., Dmitriev, A. A., Alekseev, B. Y., Kardymon, O. L., Sadritdinova, A. F., Fedorova, M. S., Pokrovsky, A. V., Melnikova, N. V., Kaprin, A. D., Moskalev, A. A., & Snezhkina, A. V. (2016). Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget, 7(29), 44879-44905. [CrossRef] [PubMed] [Google Scholar]
  • Kuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes Dev, 24(22), 2463-2479. [CrossRef] [PubMed] [Google Scholar]
  • Lee, H., & Lee, S. V. (2022). Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans. Mol Cells, 45(11), 763-770. [CrossRef] [PubMed] [Google Scholar]
  • Lee, S., Park, H. O., & Yoo, W. (2022). Anti Melanogenic and Antioxidant Effects of Cell-Free Supernatant from Lactobacillus gasseri BNR17. Microorganisms, 10(4). [PubMed] [Google Scholar]
  • Li, W., Gao, L., Huang, W., Ma, Y., Muhammad, I., Hanif, A., Ding, Z., & Guo, X. (2022). Antioxidant properties of Lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans. Food Funct, 13(6), 3690-3703. [CrossRef] [PubMed] [Google Scholar]
  • Madelaire, C. B., Klink, A. C., Israelsen, W. J., & Hindle, A. G. (2022). Fibroblasts as an experimental model system for the study of comparative physiology. Comp Biochem Physiol B Biochem Mol Biol, 260, 110735. [CrossRef] [PubMed] [Google Scholar]
  • Levin, E. D. (2005). Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging. Curr Alzheimer Res, 2(2), 191-196. [CrossRef] [PubMed] [Google Scholar]
  • Glorieux, C., & Calderon, P. B. (2017). Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem, 398(10), 1095-1108. [CrossRef] [PubMed] [Google Scholar]
  • Ng, C. C., Wang, C. Y., Wang, Y. P., Tzeng, W. S., & Shyu, Y. T. (2011). Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata. J Biosci Bioeng, 111(3), 289-293. [CrossRef] [PubMed] [Google Scholar]
  • Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of Lactic acid bacteria from indigenous raw milk for potential probiotic properties. J Dairy Sci, 103(2), 1223-1237. [CrossRef] [PubMed] [Google Scholar]
  • Staats, S., Lüersen, K., Wagner, A. E., & Rimbach, G. (2018). Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. J Agric Food Chem, 66(15), 3737-3753. [CrossRef] [PubMed] [Google Scholar]
  • Truusalu, K., Naaber, P., Kullisaar, T., Tamm, H., Mikelsaar, R. h., Zilmer, K., Rehema, A., Zilmer, M., & Mikelsaar, M. (2009). The influence of antibacterial and antioxidative probiotic lactobacilli on gut mucosa in a mouse model of Salmonella infection. Microbial Ecology in Health and Disease, 16(4). [Google Scholar]
  • Usui, Y., Kimura, Y., Satoh, T., Takemura, N., Ouchi, Y., Ohmiya, H., Kobayashi, K., Suzuki, H., Koyama, S., Hagiwara, S., Tanaka, H., Imoto, S., Eberl, G., Asami, Y., Fujimoto, K., & Uematsu, S. (2018). Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice. Int Immunol, 30(7), 319-331. [CrossRef] [PubMed] [Google Scholar]
  • Vaddavalli, P. L., & Schumacher, B. (2022). The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet, 38(6), 598-612. [CrossRef] [PubMed] [Google Scholar]
  • Wang, H., & Li, L. (2022). Comprehensive Evaluation of Probiotic Property, Hypoglycemic Ability and Antioxidant Activity of Lactic acid bacteria. Foods, 11(9). [PubMed] [Google Scholar]
  • Yang, H. J., Weon, J. B., Lee, B., & Ma, C. J. (2011). The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn Mag, 7(27), 207-212. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.