Open Access
Issue
BIO Web Conf.
Volume 76, 2023
I International Conference “Biotechnologies in the Context of Human Development” (BCHD - 2023)
Article Number 01013
Number of page(s) 10
Section Biotechnologies and Modern Medical Technologies
DOI https://doi.org/10.1051/bioconf/20237601013
Published online 20 November 2023
  • M. A. Barek, S. Jafrin, Md. A. Aziz et al., Catalase C262T genetic variation and cancer susceptibility: A comprehensive meta-analysis with meta-regression and trial sequential analysis, 37(3), 227–240 (2022) [Google Scholar]
  • T. A. Karmakova, Immunological aspects of the occurrence and progression of malignant neoplasms. Russian Immunological Journal, 13(22), 296–298 (2019) [Google Scholar]
  • S. A. Laptiev, M. A. Korzhenevskaya, E. N. Imyanitov, Molecular genetic “portrait” of breast cancer, 24(2), 12–22 (2017) [Google Scholar]
  • S. Dashti, Z. Taherian-Esfahani, A. Keshtkar et al., Associations between XRCC3 Thr241Met polymorphisms and breast cancer risk: systematic-review and meta-analysis of 55 case-control studies. Medical Genetics, 20, 79 (2019) [Google Scholar]
  • G. J. Grundy, J. L. Parsons, Base precision repair and its implications for cancer therapy. Essays in Biochemistry, 64(5), 831–843 (2020) [Google Scholar]
  • A. S. Gorbenko, M. A. Stolyar, T. N. Subbotina et al., The role of XRCC1 gene Arg399Gln polymorphism in the pathogenesis of chronic myeloproliferative diseases. Hematology and transfusiology, 61(3), 143–145 (2016) [Google Scholar]
  • M. A. Kapralova, P. K. Brenner, Yu. V. Nosova, Molecular genetic markers of the XRCC1, ERCC2 and BRCA1 genes in ovarian cancer, 329–330 (2022) [Google Scholar]
  • J. Kabzinski, M. Maczynska, D. Kaczmarczyk et al., Influence of Arg399Gln, Arg280His and Arg194Trp XRCC1 gene polymorphisms of Base Excision Repair pathway on the level of 8-oxo-guanine and risk of head and neck cancer in the Polish population. Cancer biomark, 32(3), 317–326 (2021) [Google Scholar]
  • O. A. Nikitina, M. A. Darenskaya, N. V. Semyonova et al., Antioxidant defense system: regulation of metabolic processes, genetic determinants, methods of determination. Siberian Scientific Medical Journal, 42(3), 4–17 (2022) [Google Scholar]
  • A. V. Torgunakova, V. I. Minina, A. N. Glushkov et al., Study of polymorphism of DNA repair and cell cycle genes in the formation of predisposition to the development of breast cancer, 3, 83–90 (2022) [Google Scholar]
  • E. P. Kulikov, S. A. Mertsalov, A. A. Nikiforov et al., XPD gene polymorphism in colorectal cancer, 7(3), 340–348 (2019) [Google Scholar]
  • K. Cheng, D. B. Wigley, DNA translocation mechanism of an XPD family helicase, 7 (2018) [Google Scholar]
  • National Library of Medicine, rs4756146 RefSNP Report (2022). https://www.ncbi.nlm.nih.gov/snp/rs4756146 [Google Scholar]
  • National Library of Medicine, rs1001179 RefSNP Report (2022). https://www.ncbi.nlm.nih.gov/snp/rs1001179 [Google Scholar]
  • A. Özgöz, K. H. Öztürk, A. Yükseltürk, H. Şamlı, Z. Başkan, F. M. İçduygu, M. Bacaksız, Genetic Variations of DNA Repair Genes in Breast Cancer. Pathology and Oncology Research, 25(1), 107–114 (2019) [Google Scholar]
  • J. T. Isakova, D. Vinnikov, V. N. Kipen et al., Gene-to-gene interactions and the association of TP53, XRCC1, TNFa, HMMR, MDM2 and PALB2 with breast cancer in Kyrgyz females. Breast Cancer, 27, 938–946 (2020) [Google Scholar]
  • A. Semeteikyzy, E. K. Makimbetov, Zh. T. Isakova et al., Association of XRCC1, HMMR genes with the development of breast cancer in the Kyrgyz population. Malignant tumors, 8(4), 45–49 (2018) [Google Scholar]
  • L. K. Lerner, XPD/ERCC2 mutations interfere in cellular responses to oxidative stress. Mutagenesis, 34(4), 341–354 (2019) [Google Scholar]
  • Q. Zhou, Y. Fu, L. Wen et al., XPD Polymorphisms and Risk of Hepatocellular Carcinoma and Gastric Cancer: A Meta-Analysis. Technol Cancer Res Treat, 20 (2021) [Google Scholar]
  • L. Qing, R. Ma, M. Zhang, XRCC1 rs1799782 (C194T) polymorphism correlated with tumor metastasis and molecular subtypes in breast cancer. OncoTargets and Therapy, 11, 8435–8444 (2018) [Google Scholar]
  • C. B. Tavares, F. D. C. S. A. Gomes-Braga, E. B. Sousa et al., Association between Single Nucleotide Polymorphisms and Glioma Risk: A Systematic Literature Review. Cancer Invest, 38(3), 169–183 (2020) [Google Scholar]
  • S. M. Vostrikova, A. B. Grinev, V. G. Gogvadze, Reactive oxygen species and antioxidants in carcinogenesis and tumor therapy. Biochemistry, 85(10), 1474–1488 (2020) [Google Scholar]
  • L. E. Muravleva, V. B. Sirota, S. S. Zhumakaeva et al., Oxidative stress in breast cancer. Modern problems of science and education, 1, 69–77 (2019) [Google Scholar]
  • T. Marinko, J. T. Stojanov Konda, V. Dolžan et al., Genetic Variability of Antioxidative Mechanisms and Cardiotoxicity after Adjuvant Radiotherapy in HER2-Positive Breast Cancer Patients. Dis Markers, 6645588 (2020) [Google Scholar]
  • E. F. Harkness, S. M. Astley, D. G. Evans, Risk-based breast cancer screening strategies in women. Best Pract Res Clin Obstet Gynaecol, 65, 3–17 (2020) [CrossRef] [Google Scholar]
  • Z. I. Bisultanova, M. M. Atsaeva, P. M. Dzhambetova, The role of polymorphic variants of the SOD2, GSTT1, GSTM1 and GSTP1 genes in the development of breast cancer in women of the Chechen population, 1(2), 85–91 (2016) [Google Scholar]
  • E. P. Dyatel, The Manager, 13(3), 57–66 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.