Open Access
Issue
BIO Web Conf.
Volume 79, 2023
2nd International Conference on Maritime Education (ICOME 2023)
Article Number 05008
Number of page(s) 11
Section Developing Skills for Environmental Monitoring and Assessment in Maritime Contexts
DOI https://doi.org/10.1051/bioconf/20237905008
Published online 08 December 2023
  • F. Reif and J. I. Heller, “Knowledge structure and problem solving in physics Knowledge Structure and Problem Solving in Physics, ” Educ. Psychol., vol. 17, no. 2, pp. 102–127, 1982. [CrossRef] [Google Scholar]
  • W. Hung and D. H. Jonassen, “Conceptual understanding of causal reasoning in physics, ” Int. J. Sci. Educ., vol. 28, no. 13, pp. 1601–1621, 2006, doi: 10.1080/09500690600560902. [CrossRef] [Google Scholar]
  • J. L. Docktor and J. P. Mestre, “Synthesis of discipline-based education research in physics, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 10, no. 2, pp. 1–58, 2014, doi: 10.1103/PhysRevSTPER.10.020119. [Google Scholar]
  • J. L. Docktor, N. E. Strand, J. P. Mestre, and B. H. Ross, “Conceptual problem solving in high school physics, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 11, no. 2, pp. 1–13, 2015, doi: 10.1103/PhysRevSTPER.11.020106. [Google Scholar]
  • B. Hegde and B. N. Meera, “How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 8, no. 1, pp. 1–9, 2012, doi: 10.1103/PhysRevSTPER.8.010109. [Google Scholar]
  • L. C. McDermott, “Physics education research: The key to student learning, ” Phys. World, vol. 17, no. 1, pp. 40–41, 2004, doi: 10.1088/2058-7058/17/1/37. [CrossRef] [Google Scholar]
  • A. Busyairi and M. Zuhdi, “Profil Miskonsepsi Mahasiswa Calon Guru Fisika Ditinjau Dari Berbagai Representasi Pada Materi Gerak Lurus Dan Gerak Parabola, ” J. Pendidik. Fis. dan Teknol., vol. 6, no. 1, pp. 90–98, 2020, doi: 10.29303/jpft.v6i1.1683. [CrossRef] [Google Scholar]
  • M. Planinic, L. Ivanjek, A. Susac, and Z. Milin-Sipus, “Comparison of university students’ understanding of graphs in different contexts, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 9, no. 2, pp. 1–9, 2013, doi: 10.1103/PhysRevSTPER.9.020103. [Google Scholar]
  • D. E. Trowbridge and L. C. Mcdermott, “Investigation of student understanding of the concept of velocity in one dimension, ” Am. J. Phys., vol. 48, no. 12, pp. 1020–1028, 1980, doi: 10.1119/1.12298. [CrossRef] [Google Scholar]
  • D. E. Trowbridge and L. C. McDermott, “Investigation of student understanding of the concept of acceleration in one dimension, ” Am. J. Phys., vol. 49, no. 3, pp. 242–253, 1981, doi: 10.1119/1.12525. [CrossRef] [Google Scholar]
  • S. Syuhendri, “Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics, ” J. Phys. Conf. Ser., vol. 1876, no. 1, 2021, doi: 10.1088/1742-6596/1876/1/012090. [CrossRef] [Google Scholar]
  • R. Rosenblatt, E. C. Sayre, and A. F. Heckler, “Modeling students’ conceptual understanding of force, velocity, and acceleration, ” AIP Conf. Proc., vol. 1179, pp. 245–248, 2009, doi: 10.1063/1.3266727. [CrossRef] [Google Scholar]
  • J. Wells, R. Henderson, A. Traxler, P. Miller, and J. Stewart, “Exploring the structure of misconceptions in the force and motion conceptual evaluation with modified module analysis, ” Phys. Rev. Phys. Educ. Res., vol. 16, no. 1, p. 10121, 2020, doi: 10.1103/PHYSREVPHYSEDUCRES.16.010121. [CrossRef] [Google Scholar]
  • L. Bollen, M. De Cock, K. Zuza, J. Guisasola, and P. Van Kampen, “Generalizing a categorization of students’ interpretations of linear kinematics graphs, ” Phys. Rev. Phys. Educ. Res., vol. 12, no. 1, pp. 1–10, 2016, doi: 10.1103/PhysRevPhysEducRes.12.010108. [Google Scholar]
  • A. Maries and C. Singh, “Exploring one aspect of pedagogical content knowledge of teaching assistants using the test of understanding graphs in kinematics, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 9, no. 2, pp. 1–14, 2013, doi: 10.1103/PhysRevSTPER.9.020120. [Google Scholar]
  • W. M. Christensen and J. R. Thompson, “Investigating Student Understanding of Physics Concepts and the Underlying Calculus Concepts in Thermodynamics, ” Proc. 13th Annu. Conf. Res. Undergrad. Math. Educ., pp. 1–24, 2010, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1048.4459&rep=rep1&type=pdf. [Google Scholar]
  • G. Wiggins and J. McTighe, Understanding by Design, Expanded 2. USA: Association for Supervision and Curriculum Development, 2005. [Google Scholar]
  • F. Mufit, Asrizal, R. Puspitasari, and A. N, “Cognitive Conflict-Based E-Book With Real Experiment Video Analysis Integration To Enhance Conceptual Understanding of Motion Kinematics, ” J. Pendidik. IPA Indones., vol. 11, no. 4, pp. 626–639, 2022, doi: 10.15294/jpii.v11i4.39333. [Google Scholar]
  • D. E. Saputri, M. R. A. Taqwa, F. N. Aini, M. I. Shodiqin, and L. Rivaldo, “Pemahaman Konsep Mekanika: Menentukan Arah Percepatan Pendulum, sulitkah?, ” J. Pendidik. Fis. dan Teknol., vol. 5, no. 1, pp. 110–117, 2019. [CrossRef] [Google Scholar]
  • M. R. A. Taqwa and L. Rivaldo, “Kinematics Conceptual Understanding: Interpretation of Position Equations as A Function of Time, ” J. Pendidik. Sains, vol. 6, no. 4, pp. 120–127, 2018, [Online]. Available: http://journal.um.ac.id/index.php/jps/. [Google Scholar]
  • D. Sarkity and P. D. Sundari, “Pemahaman Konsep Fisika Calon Guru Biologi Pada Topik Kinematika, ” J. Pedagog. Hayati, vol. 4, no. 2, pp. 106–116, 2020, [Online]. Available: https://ojs.umrah.ac.id/index.php/pedagogihayati/article/view/2569. [Google Scholar]
  • R. J. Beichner, “Testing student interpretation of kinematics graphs, ” Am. J. Phys., vol. 62, no. 8, pp. 750–762, 1994, doi: 10.1119/1.17449. [CrossRef] [Google Scholar]
  • D. Halliday, R. Resnick, and G. H. Bowen, Fundamentals of Physics, 10th edition. United States of America: John Wiley & Sons, Inc., 2014. [Google Scholar]
  • D. Sarkity, A. Azhar, and P. Sundari, “Students‘ Ability to Identify The Types of Motion of Objects Through Kinematics Graphs, ” Proc. 1st Int. Conf. Marit. Educ., 2022, doi: 10.4108/eai.3-11-2021.2314799. [Google Scholar]
  • L. C. McDermott, M. L. Rosenquist, and E. H. van Zee, “Student difficulties in connecting graphs and physics: Examples from kinematics, ” Am. J. Phys., vol. 55, no. 6, pp. 503–513, 1987, doi: 10.1119/1.15104. [CrossRef] [Google Scholar]
  • T. Wemyss and P. Van Kampen, “Categorization of first-year university students’ interpretations of numerical linear distance-time graphs, ” Phys. Rev. Spec. Top. Phys. Educ. Res., vol. 9, no. 1, 2013, doi: 10.1103/PhysRevSTPER.9.010107. [Google Scholar]
  • S. Ceuppens, L. Bollen, J. Deprez, W. Dehaene, and M. De Cock, “9th grade students’ understanding and strategies when solving x (t) problems in 1D kinematics and y (x) problems in mathematics, ” Phys. Rev. Phys. Educ. Res., vol. 15, no. 1, p. 10101, 2019, doi: 10.1103/PhysRevPhysEducRes.15.010101. [CrossRef] [Google Scholar]
  • F. M. Goldberg and J. H. Anderson, “Student difficulties with graphical representations of negative values of velocity, ” Phys. Teach., vol. 27, no. 4, pp. 254–260, 1989, doi: 10.1119/1.2342748. [CrossRef] [Google Scholar]
  • M. R. A. Taqwa, A. Hidayat, and S. Sutopo, “Konsistensi Pemahaman Konsep Kecepatan dalam Berbagai Representasi, ” J. Ris. dan Kaji. Pendidik. Fis., vol. 4, no. 1, p. 31, 2017, doi: 10.12928/jrkpf.v4i1.6469. [CrossRef] [Google Scholar]
  • H. Eshach, “The use of intuitive rules in interpreting students’ difficulties in reading and creating kinematic graphs, ” Can. J. Phys., vol. 92, no. 1, pp. 1–8, 2014, doi: 10.1139/cjp-2013-0369. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.