Open Access
BIO Web Conf.
Volume 80, 2023
4th International Conference on Smart and Innovative Agriculture (ICoSIA 2023)
Article Number 06004
Number of page(s) 7
Section Smart and Precision Farming
Published online 14 December 2023
  • E. David, M. Serouart, D. Smith et al, Global Wheat Head Detection 2021: An improved dataset for Benchmarking Wheat Head Detection Methods, Plant Phenomics, Volume 2021. (2021). [Google Scholar]
  • Y. Kassem, H. Gokcekus, E. Alassi. Identifying most influencing input parameters for predicting cereal production using an artificial neural network model. Modelling Earth systems and Environment, Volume 8. (2022). [Google Scholar]
  • T. Khan, J. Qiu, M. Qureshi, and M. Iqbal, Agricultural fruit prediction using deep neural networks, Procedia Computer Science, Volume 174, Science Direct. (2020). [Google Scholar]
  • H. Yalcion, and S Razavi, Plant classification using convolutional neural networks, 2016 Fifth International Conference on AgroGeoinformatics (Agro-Geoinformatics), IEEE Explore. (2016). [Google Scholar]
  • J. Ubbens, M. Cieslak, P. Prusinkiewicz, and I. Stavness. The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant Methods, Volume 14, 6. (2018). [CrossRef] [Google Scholar]
  • D. Holzworth, N. Huth, J. Fainges, et al, APSIM Next Generation: Overcoming challenges in modernising a farming systems model. Environment Modelling and Software, Volume 103, pages 43 – 51. (2018). [CrossRef] [Google Scholar]
  • J. Hyles, M. Bloomfield, J. Hunt, R.M. Trethowan. Phenology and related traits for wheat adaptation. Heredity, Volume 125, pp 417–430. (2020). [CrossRef] [PubMed] [Google Scholar]
  • H. Brown, N. Huth, and D. Holzworth, Crop Model Improvement in moderning and farming systems model, European Journal of Agronomy, (2018). [PubMed] [Google Scholar]
  • J. Hanan, Parametric L-systems and their application to the modelling and visualization of plants. Dissertation University of Regina, Department of Computer Science, (1992). [Google Scholar]
  • R. Mech, Modelling and simulation of the interaction of plants with the environment using Lsystems and their extensions, PhD Thesis, Computer Science Department, University of Calgary, (1997). [Google Scholar]
  • R. Rokhana, W. Herulambang, and R. Indraswari, Machine Learning and Polynomial – L System Algorithm for Modelling and Simulation of Glycine Max (L) Merrill Growth, International ElecLindentronics Symposium, (IES), pages 463–467, (2020). [Google Scholar]
  • P, Prusinkiewicz, A. Lindenmayer, and J. Hanah, The Algorithmic beauty of Plants, Springer Verlag, (2004). [Google Scholar]
  • N. Chomsky, Syntactic Structures, The Hague, Mouton and Co. (2002). [CrossRef] [Google Scholar]
  • J.W. Backus, The Syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference. Proceedings of ICIP, UNESCO, pp. 125-132. (1959). [Google Scholar]
  • B.G. Fitch, P. Parslow, and K. Lunqvist. Evolving complete L-systems: using genetic algorithms for the generation of realistic plants, in Lewis, P.R. Headland C.J., Battle, S., and Ritsos, P.D. (Eds) Artificial Life and Intelligent Agents. Pp 16-23, Springer. (2018). [CrossRef] [Google Scholar]
  • C. Napier, D.M. Cook, L. Armstrong, and D. Diepeveen, A synthetic wheat L-system to accurately detect and visualise wheat head anomalies, Proceedings of the 3rd International Conference on Smart and Innovative Agriculture (ICOSIA), (2023). [Google Scholar]
  • J. Bernard and I. McQuillan, New techniques for inferring L-systems using genetic algorithm. In Proceedings of the 8th International Conference on Bioinspired Optimization Methods and Applications. Lecture Notes in Computer Science, pp 13-25. Springer, (2018). [Google Scholar]
  • J. Guo, H. Jiang, B. Benes, O. Deussen, X. Zhang, D. Lischinski. and H. Huang. Inverse Procedural Modeling of Branch Structures by Inferring LSystems, ACM Transactions on Graphics, Vol, 39, No. 5. (2020). [Google Scholar]
  • Z. Hartley, and A.P. French, Domain adaptation of synthetic images for wheat head detection, Plants, Volume 10, Issue 12. (2021) [Google Scholar]
  • A. Farahani, S. Voghoei, K. Rasheed. A brief review of domain adaptation, Advances in data science, Springer (2021) [Google Scholar]
  • D. Kuznichov, A Zvirin, Y. Honen, R. Kimmel. Data augmentation for leaf segmentation and counting tasks in rosette plants, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, (2019). [Google Scholar]
  • M. Renton, P. Kaitaniemi, and J. Hanan, Functional–structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function, Ecological Modelling. Volume 184, Issues 2–4, (2005). [Google Scholar]
  • M.T., Allen, P. Prusinkiewicz, and T.M. DeJong, Using L-systems for modelling source–sink interactions, architecture, and physiology of growing trees: the L-PEACH model. New Phytologist, Volume 166: 869-880. (2005). [CrossRef] [PubMed] [Google Scholar]
  • E. Costes, C. Smith, M. Renton, Y. Guédon, P. Prusinkiewicz, and C. Godin. MAppleT: simulation of apple tree development using mixed stochastic and biomechanical models. Functional Plant Biology Volume 35, 936-950. (2008). [CrossRef] [PubMed] [Google Scholar]
  • F. Grisafi, T.M. DeJong, and S. Tombesi. Fruit tree crop models: an update. In Tree Physiology Volume 42, pp 441–457. (2021). [Google Scholar]
  • S. Tu, J. Ping, H. Liu, N. Zhuang, Y. Chen, C. Zheng, H, Wan, and Y. Xue. Passion fruit detection and counting based upon multiple scale faster R-CNN using RGB-D images. Precision Agriculture, Volume 21. Pp 1072–1091. Springer Link. (2020) [CrossRef] [Google Scholar]
  • D. Li, L. Xu, C. Tan, E.D. Goodman, D. Fu, L. Xin. Digitization and Visualization of Greenhouse Tomato Plants in Indoor Environments. Sensors.; 15(2):4019-4051. (2015). [CrossRef] [PubMed] [Google Scholar]
  • G. Hinton, S. Sabour, N. Frosst. Matrix capsules with EM Routing. Google Brain, Toronto, Canada, International Conference on Learning Representations (ICLR). (2018). [Google Scholar]
  • D. Li, L. Xu, C. Tan, E.D. Goodman, D. Fu, L. Xin. Digitization and Visualization of Greenhouse Tomato Plants in Indoor Environments. Sensors. 2015; 15(2):4019-4051. (2015). [Google Scholar]
  • E. Fiestas, O. Ramos, and S. Prado, RPA and LSystem based Synthetic Data Generator for CostEfficient Deep learning Model training. 3rd IEEE Eurasia Conference on IOT, Communications and Engineering, (2021) [Google Scholar]
  • L. Du, R. Zhang, & X. Wang. Overview of twostage object detection algorithms. In Journal of Physics: Conference Series (Vol. 1544, No. 1, p. 012033). IOP Publishing. (2020). [Google Scholar]
  • Y. Wu, A. Krillov, F. Massa, W. Lo, R. Girshick, Detectron2., (2019). [Google Scholar]
  • T. Bray. The JavaScript object notation (JSON) data interchange format. (2014). [Google Scholar]
  • TY. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, P. Perona, D. Ramanan, C.L. Zitnick, and P. Dollar. Microsoft COCO: Common Objects in Context. CoRR, abs/1405.0312. (2015). [Google Scholar]
  • W. Carlson. History of Computer Graphics and Animation. Ohio State University, (2017). [Google Scholar]
  • A. Apostolico, G. M. Landau and S. Skiena, “Matching for run-length encoded strings, ” Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), Salerno, Italy, pp. 348-356, (1997). [Google Scholar]
  • (PLoS One, [Google Scholar]
  • T. Bureš. Self-Adaptation 2.0. In 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) pp. 262-263. IEEE. (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.