Open Access
Issue |
BIO Web Conf.
Volume 80, 2023
4th International Conference on Smart and Innovative Agriculture (ICoSIA 2023)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 10 | |
Section | Smart and Precision Farming | |
DOI | https://doi.org/10.1051/bioconf/20238006003 | |
Published online | 14 December 2023 |
- Y. K. T. Dang and H. V. H. Nguyen, “Effects of Maturity at Harvest and Fermentation Conditions on Bioactive Compounds of Cocoa Beans, ” Plant Foods Hum. Nutr., vol. 74, no. 1, pp. 54–60, 2019, doi: 10.1007/s11130-0180700-3. [CrossRef] [PubMed] [Google Scholar]
- N. Elkhoshkhany, “UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO2 -B2O3-SrCl2-LiF-Bi2O3 for optical application, ” Results Phys., vol. 13, 2019, doi: 10.1016/j.rinp.2019.102222. [CrossRef] [Google Scholar]
- D. A. S. Saputri, M. Fahri Reza Pahlawan, B. M. A. Murti, and R. E. Masithoh, “Vis/NIR spectroscopy for non-destructive method in detecting soybean seeds viability, ” IOP Conf. Ser. Earth Environ. Sci., vol. 1038, no. 1, 2022, doi: 10.1088/1755-1315/1038/1/012043. [Google Scholar]
- K. B. Beć, J. Grabska, and C. W. Huck, “In silico NIR spectroscopy – A review. Molecular fingerprint, interpretation of calibration models, understanding of matrix effects and instrumental difference, ” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 279, no. March, 2022, doi: 10.1016/j.saa.2022.121438. [Google Scholar]
- W. Terouzi et al., “Characterization and rapid detection of adulterations in sesame oil using FT-MIR and PCA-LDA, ” Moroccan J. Chem., vol. 4, no. 4, pp. 4-4 (2016)1052-1060, 2016, [Online]. Available: https://revues.imist.ma/index.php/morjchem/art icle/view/5167 [Google Scholar]
- J. Grabska and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications,” 2020. [Google Scholar]
- J. Van De Steene et al., “Authenticity analysis of oregano: development, validation and fitness for use of several food fingerprinting techniques, ” Food Res. Int., vol. 162, no. PA, p. 111962, 2022, doi: 10.1016/j.foodres.2022.111962. [CrossRef] [Google Scholar]
- Y. B. Che Man, Z. A. Syahariza, M. E. S. Mirghani, S. Jinap, and J. Bakar, “Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy, ” Food Chem., vol. 90, no. 4, pp. 815–819, 2005, doi: 10.1016/j.foodchem.2004.05.029. [Google Scholar]
- N. N. Batista, D. P. de Andrade, C. L. Ramos, D. R. Dias, and R. F. Schwan, “Antioxidant capacity of cocoa beans and chocolate assessed by FTIR, ” Food Res. Int., vol. 90, pp. 313–319, 2016, doi: 10.1016/j.foodres.2016.10.028. [CrossRef] [Google Scholar]
- Y. Hu et al., “Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy, ” Food Chem., vol. 202, pp. 254–261, 2016, doi: 10.1016/j.foodchem.2016.01.130. [CrossRef] [Google Scholar]
- I. A. Santos, D. G. Conceição, M. B. Viana, G. de J. Silva, L. S. Santos, and S. P. B. Ferrão, “NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates, ” Food Chem., vol. 349, no. June 2020, pp. 1–6, 2021, doi: 10.1016/j.foodchem.2021.129095. [CrossRef] [Google Scholar]
- J. Moros, F. A. Iñón, S. Garrigues, and M. de la Guardia, “Near-infrared diffuse reflectance spectroscopy and neural networks for measuring nutritional parameters in chocolate samples, ” Anal. Chim. Acta, vol. 584, no. 1, pp. 215–222, 2007, doi: 10.1016/j.aca.2006.11.020. [CrossRef] [Google Scholar]
- D. N. de Oliveira, A. C. B. Camargo, C. F. O. R. Melo, and R. R. Catharino, “A fast semiquantitative screening for cocoa content in chocolates using MALDI-MSI, ” Food Res. Int., vol. 103, no. October 2017, pp. 8–11, 2018, doi: 10.1016/j.foodres.2017.10.035. [CrossRef] [Google Scholar]
- E. K. Anyidoho, “Differentiation of Organic Cocoa Beans and Conventional Ones by Using Handheld NIR Spectroscopy and Multivariate Classification Techniques, ” Int. J. Food Sci., vol. 2021, 2021, doi: 10.1155/2021/1844675. [Google Scholar]
- M. C. García-Muñoz, M. P. Tarazona-Díaz, N. A. Meneses , G. González-Sarmiento, A. S. Pineda , and G. E. GómezUribe, “Development of color guides to evaluate the maturity of cacao clones by digital image processing, ” Pesqui. Agropecu. Trop., vol. 51, no. November, 2021, doi: 10.1590/1983-40632021v5169621. [Google Scholar]
- R. E. Masithoh, S. Lohumi, W. S. Yoon, H. Z. Amanah, and B. K. Cho, “Development of multi-product calibration models of various root and tuber powders by fourier transform near infra-red (FT-NIR) spectroscopy for the quantification of polysaccharide contents, ” Heliyon, vol. 6, no. 10, p. e05099, 2020, doi: 10.1016/j.heliyon.2020.e05099. [CrossRef] [PubMed] [Google Scholar]
- P. Khuwijitjaru, K. Boonyapisomparn, and C. W. Huck, “Near-infrared spectroscopy with linear discriminant analysis for green ‘Robusta’ coffee bean sorting, ” Int. Food Res. J., vol. 27, no. 2, pp. 287–294, 2020. [Google Scholar]
- M. Ferreiro-González, E. Espada-Bellido, L. Guillén-Cueto, M. Palma, C. G. Barroso, and G. F. Barbero, “Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics, ” Talanta, vol. 188, pp. 288–292, 2018, doi: 10.1016/j.talanta.2018.05.095. [CrossRef] [PubMed] [Google Scholar]
- M. Caredda et al., “Building of prediction models by using Mid-Infrared spectroscopy and fatty acid profile to discriminate the geographical origin of sheep milk, ” Lwt, vol. 75, pp. 131–136, 2017, doi: 10.1016/j.lwt.2016.08.053. [CrossRef] [Google Scholar]
- D. Suhandy and M. Yulia, “Classification of lampung robusta Specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics, ” Agric., vol. 11, no. 2, pp. 1–11, 2021, doi: 10.3390/agriculture11020109. [Google Scholar]
- M. E. Raypah, L. J. Zhi, L. Z. Loon, and A. F. Omar, “Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey, ” Chemom. Intell. Lab. Syst., vol. 224, no. March, p. 104540, 2022, doi: 10.1016/j.chemolab.2022.104540. [CrossRef] [Google Scholar]
- P. Mishra et al., “MBA-GUI: A chemometric graphical user interface for multi-block data visualisation, regression, classification, variable selection and automated preprocessing, ” Chemom. Intell. Lab. Syst., vol. 205, no. August, p. 104139, 2020, doi: 10.1016/j.chemolab.2020.104139. [CrossRef] [Google Scholar]
- E. Trullols, I. Ruisánchez, and F. X. Rius, “Validation of qualitative analytical methods, ” TrAC Trends Anal. Chem., vol. 23, no. 2, pp. 137–145, 2004, doi: 10.1016/S01659936(04)00201-8. [CrossRef] [Google Scholar]
- L. S. Vieira, C. Assis, M. E. L. R. de Queiroz, A. A. Neves, and A. F. de Oliveira, “Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection, ” Food Chem., vol. 345, no. August 2020, 2021, doi: 10.1016/j.foodchem.2020.128866. [CrossRef] [Google Scholar]
- K. Ncama, “Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange (Citrus sinensis) and ‘Star Ruby’ grapefruit (Citrus x paradisi Macfad), ” J. Food Eng., vol. 193, pp. 86–94, 2017, doi: 10.1016/j.jfoodeng.2016.08.015. [CrossRef] [Google Scholar]
- B. N. Peshlov, F. E. Dowelt, F. A. Drummond, and D. W. Donahue, “Comparison of three near infrared spectrophotometers for infestation detection in wild blueberries using multivariate calibration models, ” J. Near Infrared Spectrosc., vol. 17, no. 4, pp. 203– 212, 2009, doi: 10.1255/jnirs.842. [CrossRef] [Google Scholar]
- X. Lin and D. W. Sun, “Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses, ” Trends Food Sci. Technol., vol. 104, no. June, pp. 163–176, 2020, doi: 10.1016/j.tifs.2020.06.009. [CrossRef] [Google Scholar]
- A. F. Omar, H. Atan, and M. Z. MatJafri, “NIR spectroscopic properties of aqueous acids solutions, ” Molecules, vol. 17, no. 6, pp. 7440– 7450, 2012, doi: 10.3390/molecules17067440. [CrossRef] [PubMed] [Google Scholar]
- V. Cortés, C. Ortiz, N. Aleixos, J. Blasco, S. Cubero, and P. Talens, “A new internal quality index for mango and its prediction by external visible and near-infrared reflection spectroscopy, ” Postharvest Biol. Technol., vol. 118, pp. 148–158, 2016, doi: 10.1016/j.postharvbio.2016.04.011. [CrossRef] [Google Scholar]
- M. N. Merzlyak, A. E. Solovchenko, and A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit, ” Postharvest Biol. Technol., vol. 27, no. 2, pp. 197–211, 2003, doi: 10.1016/S09255214(02)00066-2. [CrossRef] [Google Scholar]
- J. U. Porep, D. R. Kammerer, and R. Carle, “On-line application of near infrared (NIR) spectroscopy in food production, ” Trends Food Sci. Technol., vol. 46, no. 2, pp. 211–230, 2015, doi: 10.1016/j.tifs.2015.10.002. [CrossRef] [Google Scholar]
- J. H. Choi, “Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears, ” Sci. Hortic. (Amsterdam)., vol. 220, pp. 147–153, 2017, doi: 10.1016/j.scienta.2017.03.050. [CrossRef] [Google Scholar]
- R. Sahukari, S. Bhasha, H. Singamala, and V. Subbaiah, “Assessment of Potential Antioxidant Activity of Polyphenolic Fraction Separated from Acalypha Indica Leaves: An In vitro Approach Ethnopharmacology and Molecular Biology View project Transcriptome analysis View project, ” no. October 2017, 2015, [Online]. Available: https://www.researchgate.net/publication/3202 58303 [Google Scholar]
- I. Novianty, K. B. Seminar, Irzaman, and I. W. Budiastra, “Improving the accuracy of nearinfrared (NIR) spectroscopy method to predict the oil content of oil palm fresh fruits, ” IOP Conf. Ser. Earth Environ. Sci., vol. 460, no. 1, 2020, doi: 10.1088/1755-1315/460/1/012004. [CrossRef] [Google Scholar]
- T. J. Gutiérrez, “State-of-the-Art Chocolate Manufacture: A Review, ” Compr. Rev. Food Sci. Food Saf., vol. 16, no. 6, pp. 1313–1344, 2017, doi: 10.1111/1541-4337.12301. [CrossRef] [Google Scholar]
- J. Y. Tang, N. Y. Chen, M. K. Chen, M. H. Wang, and L. S. Jang, “Dual-wavelength optical fluidic glucose sensor using time series analysis of D(+)-glucose measurement, ” Jpn. J. Appl. Phys., vol. 55, no. 10, 2016, doi: 10.7567/JJAP.55.106601. [Google Scholar]
- M. Rocha Baqueta, A. Coqueiro, P. Henrique Março, M. Mandrone, F. Poli, and P. Valderrama, “Integrated 1H NMR fingerprint with NIR spectroscopy, sensory properties, and quality parameters in a multi-block data analysis using ComDim to evaluate coffee blends, ” Food Chem., vol. 355, no. March, p. 129618, 2021, doi: 10.1016/j.foodchem.2021.129618. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.