Open Access
Issue
BIO Web of Conferences
Volume 81, 2023
The 4th International Conference on Environmentally Sustainable Animal Industry (ICESAI 2023)
Article Number 00044
Number of page(s) 11
DOI https://doi.org/10.1051/bioconf/20238100044
Published online 19 December 2023
  • McNab, J. Advance in poultry nutrition in the world. Proceedings of the seminar and international poultry show, WPSA, Bnagladesh Branch. p 52 (1999) [Google Scholar]
  • Van der Klis JD, Kwakernaak C, Jansman A, Blok M. Energy in poultry diets: Adjusted AME or Net Energy. Proceedings of Australian Poultry Science Symposium. 21: 4449 (2010) [Google Scholar]
  • Gomes E, Souza SR, Grandi RP, Silva RD. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A1.1 and thermomyces Lanuginosus A13.37. Braz J Microbiol 36: 75-82 (2005) [CrossRef] [Google Scholar]
  • Promthong S, Kanto U, TIrawattanawanich C, Tongyai S, Isariyodom S, Markvichitr K. Comparison of nutrient compositions and carbohydrate fractions of corn, cassava chip and cassava pellet ingredients: animals. In: Proceedings of 43rd Kasetsart University Annual Conference; p. 211-20 (2005) [Google Scholar]
  • Kiatponglarp W, Tongta S. Structural and physical properties of debranched tapioca starch. Suranaree J Sci Tech 2007; 14(2): 195-204 (2007) [Google Scholar]
  • Anguita M, Gasa J, Martín-Orú, Perez JF. Study of the effect of technological processes on starch hydrolysis, non-starch polysaccharides solubilization and physicochemical properties of different ingredients using a two-step in vitro system. Animal Feed Science and Technology 129, 99–115 (2006) [CrossRef] [Google Scholar]
  • Midau A, Augustine C, Yakubu B, Yahaya SM, Kibon A, Udoyong AO. Performance of broiler chicken fed enzyme supplemented cassava peel meal based diets. Int J Sust Agric 3(1): 1-4 (2011) [Google Scholar]
  • Bhuiyan M, Romero LF, Iji P. Maximising the energy value of cassava products in diets for broiler chickens. In: Proceedings of the 23rd Annual Australian Poultry Science Symposium; p. 27-25 (2012) [Google Scholar]
  • Huang Z. Effects and mechanism of isoamylase additive on growth performance in broilers. Siliao Gongye. 35:1–5 (2014) [Google Scholar]
  • Farrell DJ. Rapid Determination of Metabolizale Energy of Feed Using Cockrerels. J Poult. Sci. 19: 303-308 (1978) [Google Scholar]
  • Steel RGD, Torrie JH. Prinsip dan Prosedur Statistika. Terjemahan: B. Sumantri. Jakarta (ID): Gramedia Pr. (1995) [Google Scholar]
  • Cao B, Kumao T, Karasawa Y. Effects of dietary cellulose levels on growth, nitrogen utilization and retention time of diets on intestine in chicks fed equal amounts of nutrients. Proceeding of the 6th Asian Pacific Poultry Congress, Nagoya Japan pp. 402403 (1998) [Google Scholar]
  • Langhout DJ. The role of intestinal flora as affected by non-starch polysaccharides in broiler chicks. PhD Thesis. Wageningen University, Wageningen Netherlands pp 162 (1998) [Google Scholar]
  • Buléon A, Colonna P, Planchot V, Ball S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 23:85–112 (1998) [CrossRef] [Google Scholar]
  • Svihus B. Function of the digestive system. J. Appl. Poultry Res., 23: 306–314 (2014) [CrossRef] [Google Scholar]
  • Jackson S, Duke GE. Intestine fullness influences feeding behaviour and crop filling in the domestic turkey. Physiol. Behav., 58: 1027–1034 (1995) [CrossRef] [Google Scholar]
  • Langenfeld M.S. Systema digestorium, s. apparatus digestorius. In: Chicken Anatomy (in Polish). Scientific Publishing Company PWN, pp. 91–117 (1992) [Google Scholar]
  • Svihus B, Sacranie A, Denstadli V, Choct M. Nutrient utilization and functionality of the anterior digestive tract caused by intermittent feeding and inclusion of whole wheat in diets for broiler chickens. Poult. Sci. 89: 2617–2625 (2010) [CrossRef] [Google Scholar]
  • Svihus B, Lund V, Borjgen B, Bedford M, Bakken M. Effect of intermittent feeding, structural components and phytase on performance and behaviour of broiler chickens. Brit. Poultry Sci., 54: 222–230 (2013) [CrossRef] [PubMed] [Google Scholar]
  • Ravindran V. Feed enzyme: The science, practice, and metabolic realities. J. Appl. Poult. Res. 22 : 628–636 (2013) [CrossRef] [Google Scholar]
  • Svihus B. Starch digestion capacity of poultry. Poult. Sci. 93: 2394-2399 (2014) [CrossRef] [Google Scholar]
  • Perez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch 62:389–420 (2010) [CrossRef] [Google Scholar]
  • Björck I, Liljeberg H, Östman E. Low glycaemic-index foods. Br. J. Nutr. 83 (Suppl. 1):S149–S155 (2000) [CrossRef] [PubMed] [Google Scholar]
  • Zhang G, Ao Z, Hamaker BR. Slow digestion property of native cereal starches. Biomacromolecules 7:3252–3258 (2006) [CrossRef] [PubMed] [Google Scholar]
  • Amerah AM, Ravindran V, Lentle RG, Thomas DG. Feed particle size: Implications on the digestion and performance of poultry. World’s Poult. Sci. J. 63:439–455 (2007) [CrossRef] [Google Scholar]
  • Svihus B. The gizzard function, influence of diet structure and effects on nutrient availability. World’s poult. Sci. J., 67: 207-223 (2011) [CrossRef] [Google Scholar]
  • Amerah AM, Ravindran V, Lentle RG, Thomas DG. Influenced of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starter fed wheat-and-corn-based diets. Poult. Sci. 87: 2320-2328 (2008) [CrossRef] [Google Scholar]
  • Xu Y, Stark CR, Ferket PR, Williams CM, Pacheco WJ, Brake J. Effect of dietary coarsely ground corn on broiler live performance, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and digesta particle size distribution and retention time. Poult. Sci. 94: 53-60 (2015) [CrossRef] [Google Scholar]
  • Sharabi KC, Tavares D, Rines AK, Puigserver P. Molecular pathophysiology of hepatic glucose production. Mol. Aspects Med. 46: 21–33 (2015) [CrossRef] [Google Scholar]
  • Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storagein vivo. Adv. Nutr. 3: 286–294 (2012) [CrossRef] [Google Scholar]
  • Denardin CC, Walter M, Silva LPD, Souto GD, Fagundes CA. Effect of amylose content of rice varieties on glycemic metabolism and biological responses in rats. Food Chem. 105:1474–1479 (2007) [CrossRef] [Google Scholar]
  • Denardin CC, Boufleur N, Reckziegel P, Silva LPD, Walter M. Amylose content in rice (Oryza sativa) affects performance, glycemic and lipidic metabolism in rats. Cíencia Rural. 42:381–387 (2012) [CrossRef] [Google Scholar]
  • Eruvbetine D, Tajudeen ID, Adeosun AT dan Olojede AA. Cassava (M. esculenta) leaf and tuber concentrate in diets for broiler chickens. Biores. Tech., 86: 277-281 (2003) [CrossRef] [Google Scholar]
  • Adeyemi OA, Eruvbetine D, Ongutona T, Dipeolu M, Agunbiade JA. Feeding broiler chicken with diets containing whole cassava root meal fermented with rumen filtrate. Arch. Zootech. 57 (218): 247-258 (2008) [Google Scholar]
  • Nwokoro and Ekhosuehi, Effect of replacement of maize with cassava peel in cockerel diets on performance and carcass characteristics. Tropical Animal Health and Production, 37: 495-501 (2005) [CrossRef] [PubMed] [Google Scholar]
  • Khempaka S, Molee W, Guillaume M. Dried cassava pulp as an alternative feedstuff for broilers: Effect on growth performance, carcass traits, digestive organs, and nutrient digestibility. J. Appl. Poult. Res. 18: 487-493 (2009) [CrossRef] [Google Scholar]
  • Bhuiyan MM, Iji PA. Energy Value of Cassava Products in Broiler Chicken Diets with or without Enzyme Supplementation. Asian-Australas. J. Anim. Sci. 28:1317–1326 (2015) [CrossRef] [PubMed] [Google Scholar]
  • Zelenka J, Ceresnakova Z. Effect of age on digestibility of starch in chickens with different growth rate. Czech J. Anim. Sci. 50:411–415 (2005) [CrossRef] [Google Scholar]
  • Svihus B, Hetland H. Ileal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. Br. Poult. Sci. 42:633–637 (2001) [CrossRef] [PubMed] [Google Scholar]
  • Hetland, H., B. Svihus and M. Choctt. Role of insoluble fiber on gizzard activity in layers. J. Apply. Poultry Res. 14: 38—46 (2005) [CrossRef] [Google Scholar]
  • Rougiere N, Carré B. Comparison of gastrointestinal transit times between chickens from D+ and D− genetic lines selected for divergent digestion efficiency. Animal 4:1861–1872 (2010) [CrossRef] [PubMed] [Google Scholar]
  • Gracia MI, Arani´bar MJ, L´azaro R, Medel P, Mateos GG. α-Amylase Supplementation of Broiler Diets Based on Corn. Poult. Sci. 82:436–442 (2003) [CrossRef] [Google Scholar]
  • Kaczmarek SA, Rogiewicz A, Mogielnicka M, Rutkowski A, Jones RO, Slominski BA. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poult. Sci. 93:1745–1753 (2014) [CrossRef] [Google Scholar]
  • Yuan J, Xingyu W, Dafei Y, Maofei W, Xiaonan Y, Zhao L, Yuming G. Effect of different amylases on the utilization of cornstarch in broiler chickens. Poult. Sci. 96:1139–1148 (2017) [CrossRef] [Google Scholar]
  • Hazelwood RL. Pancreatic hormones, insulin, glicagon molar ratios and somatostatin as determinants of avian carbohydrate metabolism. J Exp Zool. 232:647–652 (2000) [Google Scholar]
  • Goodwin, Denise, John B, McMurray BL, William IR, Danny LM. Blood glucose value and definitions of hypoglicemia and hyperglycemia. Georg Poult Lab (Georgia). The University of Georgia (1994) [Google Scholar]
  • Suvarna S, Christensen VL, Ort DT, Croom Jr WJ. High levels of dietary carbohydrate increase glucose transport in poult intestine. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141:257–263 (2005) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.