Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01006
Number of page(s) 9
Published online 12 January 2024
  • Liu, L., Xu, X., Cheng, D., Yao, X., & Pan, S. (2012). Structure–activity relationship of citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger. Journal of agricultural and food chemistry, 60(17), 4336-4341. [CrossRef] [PubMed] [Google Scholar]
  • Teixeira, S., Siquet, C., Alves, C., Boal, I., Marques, M. P., Borges, F., & Reis, S. (2005). Structure– property studies on the antioxidant activity of flavonoids present in diet. Free Radical Biology and Medicine, 39(8), 1099-1108. [CrossRef] [Google Scholar]
  • Ji, H. F., & Zhang, H. Y. (2006). Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. Journal of Molecular Structure: THEOCHEM, 767(1-3), 3-9. [CrossRef] [Google Scholar]
  • Bors, W., & Saran, M. (1987). Radical scavenging by flavonoid antioxidants. Free radical research communications, 2(4-6), 289-294. [CrossRef] [PubMed] [Google Scholar]
  • Gabor, M. (1986). Anti-inflammatory and anti-allergic properties of flavonoids. Prog. Clin. Biol. Res., 213, 471-480. [Google Scholar]
  • Cao, Y., Xie, L., Liu, K., Liang, Y., Dai, X., Wang, X. & Li, X. (2021). The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacological Research, 174, 105919 [CrossRef] [PubMed] [Google Scholar]
  • Hu, C. Q., Chen, K. E., Shi, Q., Kilkuskie, R. E., Cheng, Y. C., & Lee, K. H. (1994). Anti-AIDS agents, 10. Acacetin-7-o-β-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. Journal of natural products, 57(1), 42-51. [CrossRef] [PubMed] [Google Scholar]
  • Olivero-Verbel, J., & Pacheco-Londoño, L. (2002). Structure− activity relationships for the anti-HIV activity of flavonoids. Journal of chemical information and computer sciences, 42(5), 1241-1246. [CrossRef] [PubMed] [Google Scholar]
  • Cushnie, T. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents, 26(5), 343-356. [CrossRef] [PubMed] [Google Scholar]
  • Al Aboody, M. S., & Mickymaray, S. (2020). Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics, 9(2), 45. [CrossRef] [PubMed] [Google Scholar]
  • Ren, W., Qiao, Z., Wang, H., Zhu, L., & Zhang, L. (2003). Flavonoids: promising anticancer agents. Medicinal research reviews, 23(4), 519-534. [CrossRef] [PubMed] [Google Scholar]
  • Ramos, S. (2007). Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. The Journal of nutritional biochemistry, 18(7), 427-442. [CrossRef] [PubMed] [Google Scholar]
  • Dengle, R. V., & Deshmukh, R. N. (2013). Synthesis and antimicrobial evaluation of chromones bearing 1, 5-benzo thiazepinyl moiety. International Journal of Pharmaceutical Sciences and Research, 4(4), 1495. [Google Scholar]
  • Gabor, M. (1986). Anti-inflammatory and anti-allergic properties of flavonoids. Prog. Clin. Biol. Res., 213, 471-480. [Google Scholar]
  • Young, I. S. (2001). Measurement of total antioxidant capacity. Journal of clinical pathology, 54(5), 339-339. [CrossRef] [PubMed] [Google Scholar]
  • El-Shaaer, H. M., Foltínová, P., Lácová, M., Chovancová, J., &Stankovičová, H. (1998). Synthesis, antimicrobial activity and bleaching effect of some reaction products of 4-oxo-4H-benzopyran-3- carboxaldehydes with aminobenzothiazoles and hydrazides. Il Farmaco, 53(3), 224-232. [CrossRef] [Google Scholar]
  • Chohan, Z. H., Rauf, A., Naseer, M. M., Somra, M. A., & Supuran, C. T. (2006). Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(2), 173-177. [CrossRef] [PubMed] [Google Scholar]
  • Phosrithong, N., Samee, W., Nunthanavanit, P., & Ungwitayatorn, J. (2012). In vitro antioxidant activity study of novel chromone derivatives. Chemical Biology & Drug Design, 79(6), 981-989. [CrossRef] [PubMed] [Google Scholar]
  • Tawfik, H. A., Ewies, E. F., & El-Hamouly, W. S. (2014). Synthesis of chromones and their applications during the last ten years during the last ten years. Ijrpc, 4(4), 1046-1085. [Google Scholar]
  • GREENBERG, D. M. (1961). Carbon catabolism of amino acids. In Metabolic pathways (pp. 79-172). Academic Press. [CrossRef] [Google Scholar]
  • Ansari, A. Q., Ahmed, S. A., & Waheed, M. A. (2013). determination of antioxidant activity of WithaniasomniferaDunalEur. J. Exp. Bio, 3, 502-507. [Google Scholar]
  • Wheeler, G. L., Jones, M. A., & Smirnoff, N. (1998). The biosynthetic pathway of vitamin C in higher plants. Nature, 393(6683), 365-369. [CrossRef] [PubMed] [Google Scholar]
  • Jacobson, K. A., Moro, S., Manthey, J. A., West, P. L., & Ji, X. D. (2002). Interactions of flavones and other phytochemicals with adenosine receptors. Flavonoids in cell function, 163-171. [Google Scholar]
  • Roma, G., Di Braccio, M., Carrieri, A., Grossi, G., Leoncini, G., Signorello, M. G., & Carotti, A. (2003). Coumarin, chromone, and 4 (3H)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: synthesis, biological evaluation, and comparative molecular field analysis. Bioorganic & medicinal chemistry, 11(1), 123-138. [CrossRef] [PubMed] [Google Scholar]
  • Amari, G., Armani, E., Ghirardi, S., Delcanale, M., Civelli, M., Caruso, P. L. & Mor, M. (2004). Synthesis, pharmacological evaluation, and structure–activity relationships of benzopyran derivatives with potent SERM activity. Bioorganic & medicinal chemistry, 12(14), 3763-3782. [CrossRef] [PubMed] [Google Scholar]
  • (a) Gross, A., Borcherding, D. R., Friedrich, D., & Sabol, J. S. (2001). A stereocontrolled approach to substituted piperidones and piperidines: flavopiridol D-ring analogs. Tetrahedron Letters, 42(9), 1631-1633. [CrossRef] [Google Scholar]
  • (b) Mukherjee, A. K., Basu, S., Sarkar, N., & Ghosh, A. C. (2001). Advances in cancer therapy with plant based natural products. Current medicinal chemistry, 8(12), 1467-1486. [CrossRef] [PubMed] [Google Scholar]
  • Bolós, J., Anglada, L., Gubert, S., Planas, J. M., Agut, J., Príncep, M., ... & Ortiz, J. A. (1998). 7-[3-(1- Piperidinyl) propoxy] chromenones as Potential Atypical Antipsychotics. 2. Pharmacological Profile of 7- [3-[4-(6-Fluoro-1, 2-benzisoxazol-3-yl)-piperidin-1-yl] propoxy]-3-(hydroxymethyl) chromen-4-one (Abaperidone, FI-8602). Journal of medicinal chemistry, 41(27), 5402-5409. [CrossRef] [PubMed] [Google Scholar]
  • Larget, R., Lockhart, B., Renard, P., & Largeron, M. (2000). A convenient extension of the Wessely–Moser rearrangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. Bioorganic & medicinal chemistry letters, 10(8), 835-838. [CrossRef] [PubMed] [Google Scholar]
  • Hadjeri, M., Barbier, M., Ronot, X., Mariotte, A. M., Boumendjel, A., & Boutonnat, J. (2003). Modulation of P-glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. Journal of medicinal chemistry, 46(11), 2125-2131. [CrossRef] [PubMed] [Google Scholar]
  • de Paula, N. C., Cordeiro, K. C. A., de Melo Souza, P. L., Nogueira, D. F., e Sousa, D. B. D. S., Costa, M. B., ... & de Oliveira, V. (2015). Biosynthesis of human diazepam and clonazepam metabolites. Bioorganic & Medicinal Chemistry Letters, 25(5), 1026-1029 [CrossRef] [PubMed] [Google Scholar]
  • Shibata, K., Nagai, I., & Kishida, M. (1916). The occurrence and physiological significance of flavone derivatives in plants. Journal of Biological Chemistry, 28(1), 93-108. [CrossRef] [Google Scholar]
  • Oteiza, P. I., Erlejman, A. G., Verstraeten, S. V., Keen, C. L., & Fraga, C. G. (2005). Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface?. Clinical and Developmental Immunology, 12(1), 19-25. [CrossRef] [PubMed] [Google Scholar]
  • Ollila, F., Halling, K., Vuorela, P., Vuorela, H., & Slotte, J. P. (2002). Characterization of flavonoid– biomembrane interactions. Archives of biochemistry and biophysics, 399(1), 103-108. [CrossRef] [PubMed] [Google Scholar]
  • Han, D., WILLIAMS, E., & CADENAS, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochemical Journal, 353(2), 411-416. [CrossRef] [PubMed] [Google Scholar]
  • Basniwal, P. K., Suthar, M., Rathore, G. S., Gupta, R., Kumar, V., Pareek, A., & Jain, D. (2009). In-vitro antioxidant activity of hot aqueous extract of Helicteresisora Linn. fruits. [Google Scholar]
  • Kota, C. S., Hemanth Kumar, V., & Sunitha Reddy, M. (2017). Evaluation of antioxidant activity in Polyherbal extract. World J Pharm Res, 6(12), 1422-1427. [Google Scholar]
  • Vallyathan, V., Shi, X., & Castranova, V. (1998). Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis. Environmental health perspectives, 106(suppl 5), 1151-1155. [PubMed] [Google Scholar]
  • Moris, D., Spartalis, M., Spartalis, E., Karachaliou, G. S., Karaolanis, G. I., Tsourouflis, G., ... & Theocharis, S. (2017). The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Annals of translational medicine, 5(16). [PubMed] [Google Scholar]
  • Qiao, J., Arthur, J. F., Gardiner, E. E., Andrews, R. K., Zeng, L., & Xu, K. (2018). Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox biology, 14, 126-130. [CrossRef] [PubMed] [Google Scholar]
  • Chabot, F., Mitchell, J. A., Gutteridge, J. M., & Evans, T. W. (1998). Reactive oxygen species in acute lung injury. European Respiratory Journal, 11(3), 745-757. [CrossRef] [PubMed] [Google Scholar]
  • Uddin, M. N., Ahmed, S. S., & Alam, S. R. (2020). Biomedical applications of Schiff base metal complexes. Journal of Coordination Chemistry, 73(23), 3109-3149. [CrossRef] [Google Scholar]
  • Shah, S. S., Shah, D., Khan, I., Ahmad, S., Ali, U., & Rahman, A. (2020). Synthesis and antioxidant activities of Schiff bases and their complexes: An updated review. Biointerface Res. Appl. Chem, 10, 6936-6963. [CrossRef] [Google Scholar]
  • Singh, G., & Thakur, K. (2018). Synthesis and Investigations on Antioxidant Behaviour of Chromone based Semicarbazones. Oriental Journal of Chemistry, 34(6), 3095. [CrossRef] [Google Scholar]
  • Gupta, D. (2015). Methods for determination of antioxidant capacity: A review. International Journal of Pharmaceutical Sciences and Research, 6(2), 546. [Google Scholar]
  • Porfírio, D. A., de Queiroz Ferreira, R., Malagutti, A. R., & Valle, E. M. A. (2014). Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron (II) ions. Electrochimica acta, 141, 33-38. [CrossRef] [Google Scholar]
  • Amić, D., Davidović-Amić, D., Bešlo, D., & Trinajstić, N. (2003). Structure-radical scavenging activity relationships of flavonoids. Croaticachemica acta, 76(1), 55-61. [Google Scholar]
  • Nunes, X. P., Silva, F. S., Almeida, J. R. G. D. S., Barbosa Filho, J. M., de Lima, J. T., de Araújo Ribeiro, L. A., & Júnior, L. J. Q. (2012). Biological oxidations and antioxidant activity of natural products (pp. 1-20). New York: INTECH Open Access Publisher. [Google Scholar]
  • Krishnaiah, D., Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and bioproducts processing, 89(3), 217-233. [CrossRef] [Google Scholar]
  • Kumar, G., Saha, R., Rai, M.K., Thomas, R. and Kim, T.H., 2019. Proof-of-work consensus approach in blockchain technology for cloud and fog computing using maximization-factorization statistics. IEEE Internet of Things Journal, 6(4), pp.6835-6842. [CrossRef] [Google Scholar]
  • Mia, M., Singh, G., Gupta, M.K. and Sharma, V.S., 2018. Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, pp.289-299. [CrossRef] [Google Scholar]
  • Bhushan, B., Sahoo, C., Sinha, P. and Khamparia, A., 2021. Unification of Blockchain and Internet of Things (BIoT): requirements, working model, challenges and future directions. Wireless Networks, 27, pp.55-90. [CrossRef] [Google Scholar]
  • Kaur, T., Kaur, B., Bhat, B.H., Kumar, S. and Srivastava, A.K., 2015. Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0. 7La0. 3Fe11. 7Co0. 3O19 hexaferrites. Physica B: Condensed Matter, 456, pp.206-212. [CrossRef] [Google Scholar]
  • Masud, M., Gaba, G.S., Alqahtani, S., Muhammad, G., Gupta, B.B., Kumar, P. and Ghoneim, A., 2020. A lightweight and robust secure key establishment protocol for internet of medical things in COVID-19 patients care. IEEE Internet of Things Journal, 8(21), pp.15694-15703. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.