Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01013
Number of page(s) 27
DOI https://doi.org/10.1051/bioconf/20248601013
Published online 12 January 2024
  • Gibson, Ian, David Rosen, Brent Stucker, Mahyar Khorasani, Ian Gibson, David Rosen, Brent Stucker, and Mahyar Khorasani. “Introduction and basic principles.” Additive manufacturing technologies (2021): 1-21. [Google Scholar]
  • Campbell, Thomas, Christopher Williams, Olga Ivanova, and Banning Garrett. “Could 3D printing change the world.” Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC 3 (2011): 1-16. [Google Scholar]
  • Sames, William J., F. A. List, Sreekanth Pannala, Ryan R. Dehoff, and Sudarsanam Suresh Babu. “The metallurgy and processing science of metal additive manufacturing.” International materials reviews 61, no. 5 (2016): 315-360. [CrossRef] [Google Scholar]
  • Pavan Kalyan, B. G., and Lalit Kumar. “3D printing: applications in tissue engineering, medical devices, and drug delivery.” Aaps Pharmscitech 23, no. 4 (2022): 92. [CrossRef] [PubMed] [Google Scholar]
  • Chia, Helena N., and Benjamin M. Wu. “Recent advances in 3D printing of biomaterials.” Journal of biological engineering 9, no. 1 (2015): 1-14. [CrossRef] [PubMed] [Google Scholar]
  • Niaki, Mojtaba Khorram, and Fabio Nonino. “The management of additive manufacturing.” Birmingham: Springer (2018). [Google Scholar]
  • Gao, Chaohua, Chenyu Wang, Hui Jin, Zhonghan Wang, Zuhao Li, Chenyu Shi, Yi Leng, Fan Yang, He Liu, and Jincheng Wang. “Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics.” RSC advances 8, no. 44 (2018): 25210-25227. [CrossRef] [PubMed] [Google Scholar]
  • Karayel, Elif, and Yahya Bozkurt. “Additive manufacturing method and different welding applications.” Journal of Materials Research and Technology 9, no. 5 (2020): 11424-11438. [CrossRef] [Google Scholar]
  • Thompson, Mary Kathryn, Giovanni Moroni, Tom Vaneker, Georges Fadel, R. Ian Campbell, Ian Gibson, Alain Bernard et al. “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints.” CIRP annals 65, no. 2 (2016): 737-760. [CrossRef] [Google Scholar]
  • Jayanath, Shiyan, and Ajit Achuthan. “A computationally efficient hybrid model for simulating the additive manufacturing process of metals.” International Journal of Mechanical Sciences 160 (2019): 255-269. [CrossRef] [Google Scholar]
  • Konta, Andrea Alice, Marta García-Piña, and Dolores R. Serrano. “Personalised 3D printed medicines: which techniques and polymers are more successful?.” Bioengineering 4, no. 4 (2017): 79. [CrossRef] [PubMed] [Google Scholar]
  • Pranzo, Daniela, Piero Larizza, Daniel Filippini, and Gianluca Percoco. “Extrusion-based 3D printing of microfluidic devices for chemical and biomedical applications: A topical review.” Micromachines 9, no. 8 (2018): 374. [CrossRef] [PubMed] [Google Scholar]
  • Stewart, Sarah A., Juan Domínguez-Robles, Victoria J. McIlorum, Elena Mancuso, Dimitrios A. Lamprou, Ryan F. Donnelly, and Eneko Larrañeta. “Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing.” Pharmaceutics 12, no. 2 (2020): 105. [CrossRef] [PubMed] [Google Scholar]
  • Giri, Bhupendra Raj, Eon Soo Song, Jaewook Kwon, Ju-Hyun Lee, Jun-Bom Park, and Dong Wuk Kim. “Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling.” Pharmaceutics 12, no. 1 (2020): 77. [CrossRef] [PubMed] [Google Scholar]
  • Xing, Jin-Feng, Mei-Ling Zheng, and Xuan-Ming Duan. “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.” Chemical Society Reviews 44, no. 15 (2015): 5031-5039. [CrossRef] [PubMed] [Google Scholar]
  • Healy, Andrew V., Evert Fuenmayor, Patrick Doran, Luke M. Geever, Clement L. Higginbotham, and John G. Lyons. “Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography.” Pharmaceutics 11, no. 12 (2019): 645. [CrossRef] [PubMed] [Google Scholar]
  • Xu, Xiaoyan, Pamela Robles-Martinez, Christine M. Madla, Fanny Joubert, Alvaro Goyanes, Abdul W. Basit, and Simon Gaisford. “Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction.” Additive Manufacturing 33 (2020): 101071. [CrossRef] [Google Scholar]
  • Awad, Atheer, Fabrizio Fina, Alvaro Goyanes, Simon Gaisford, and Abdul W. Basit. “3D printing: Principles and pharmaceutical applications of selective laser sintering.” International Journal of Pharmaceutics 586 (2020): 119594. [CrossRef] [PubMed] [Google Scholar]
  • Fina, Fabrizio, Alvaro Goyanes, Christine M. Madla, Atheer Awad, Sarah J. Trenfield, Jia Min Kuek, Pavanesh Patel, Simon Gaisford, and Abdul W. Basit. “3D printing of drug-loaded gyroid lattices using selective laser sintering.” International journal of pharmaceutics 547, no. 1-2 (2018): 44-52. [CrossRef] [PubMed] [Google Scholar]
  • Thakkar, Rishi, Daniel A. Davis Jr, Robert O. Williams III, and Mohammed Maniruzzaman. “Selective laser sintering of a photosensitive drug: impact of processing and formulation parameters on degradation, solid state, and quality of 3D-printed dosage forms.” Molecular Pharmaceutics 18, no. 10 (2021): 3894-3908. [CrossRef] [PubMed] [Google Scholar]
  • Sahini, Deepak Kumar, Joyjeet Ghose, Sanjay Kumar Jha, Ajit Behera, and Animesh Mandal. “Optimization and simulation of additive manufacturing processes: challenges and opportunities–a review.” Additive manufacturing applications for metals and composites (2020): 187-209. [Google Scholar]
  • Stansbury, Jeffrey W., and Mike J. Idacavage. “3D printing with polymers: Challenges among expanding options and opportunities.” Dental materials 32, no. 1 (2016): 54-64. [CrossRef] [PubMed] [Google Scholar]
  • Highley, Christopher B., Christopher B. Rodell, and Jason A. Burdick. “Direct 3D printing of shear‐thinning hydrogels into self‐healing hydrogels.” Advanced Materials 27, no. 34 (2015): 5075-5079. [CrossRef] [PubMed] [Google Scholar]
  • Sridhar, Ashok, Thomas Blaudeck, and Reinhard R. Baumann. “Inkjet printing as a key enabling technology for printed electronics.” Material Matters 6, no. 1 (2011): 12-15. [Google Scholar]
  • Mohebi, Mohammad Masoud, and Julian RG Evans. “A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics.” Journal of combinatorial chemistry 4, no. 4 (2002): 267-274. [CrossRef] [PubMed] [Google Scholar]
  • Walczak, Rafał, and Krzysztof Adamski. “Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips.” Journal of Micromechanics and Microengineering 25, no. 8 (2015): 085013. [CrossRef] [Google Scholar]
  • Ferracini, Riccardo, Isabel Martínez Herreros, Antonio Russo, Tommaso Casalini, Filippo Rossi, and Giuseppe Perale. “Scaffolds as structural tools for bone-targeted drug delivery.” Pharmaceutics 10, no. 3 (2018): 122. [CrossRef] [PubMed] [Google Scholar]
  • Arai, Kenichi, Shintaroh Iwanaga, Hideki Toda, Capi Genci, Yuichi Nishiyama, and Makoto Nakamura. “Three- dimensional inkjet biofabrication based on designed images.” Biofabrication 3, no. 3 (2011): 034113. [CrossRef] [PubMed] [Google Scholar]
  • Kondiah, Pariksha Jolene, Pierre PD Kondiah, Yahya E. Choonara, Thashree Marimuthu, and Viness Pillay. “A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering.” Pharmaceutics 12, no. 2 (2020): 166. [CrossRef] [PubMed] [Google Scholar]
  • Song, J. Hillstrom, R. J. Murphy, R. Narayan, and G. B. H. Davies. “Biodegradable and compostable alternatives to conventional plastics.” Philosophical transactions of the royal society B: Biological sciences 364, no. 1526 (2009): 2127-2139. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Jun, Lushan Sun, Wenyang Xu, Qianqian Wang, Sujie Yu, and Jianzhong Sun. “Current advances and future perspectives of 3D printing natural-derived biopolymers.” Carbohydrate polymers 207 (2019): 297-316. [CrossRef] [PubMed] [Google Scholar]
  • Carrow, James K., Punyavee Kerativitayanan, Manish K. Jaiswal, Giriraj Lokhande, and Akhilesh K. Gaharwar. “Polymers for bioprinting.” In Essentials of 3D biofabrication and translation, pp. 229-248. Academic Press, 2015. [CrossRef] [Google Scholar]
  • Duin, Sarah, Kathleen Schütz, Tilman Ahlfeld, Susann Lehmann, Anja Lode, Barbara Ludwig, and Michael Gelinsky. “3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blend.” Advanced healthcare materials 8, no. 7 (2019): 1801631. [CrossRef] [Google Scholar]
  • Subramaniam, Sadhasivam, Yen-Hsin Fang, Savitha Sivasubramanian, Feng-Huei Lin, and Chun-pin Lin. “Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.” Biomaterials 74 (2016): 99-108. [CrossRef] [PubMed] [Google Scholar]
  • Almeida, Andreia, Vicente Linares, Gloria Mora-Castaño, Marta Casas, Isidoro Caraballo, and Bruno Sarmento. “3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micelles.” European Journal of Pharmaceutics and Biopharmaceutics 167 (2021): 48-56. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Weilin, Wei Zhao, Qin Li, Duoyi Zhao, Junxing Qu, Ziyang Yuan, Zhihong Cheng, Xiaojuan Zhu, Xiuli Zhuang, and Zhiyu Zhang. “3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures.” Journal of Nanobiotechnology 19, no. 1 (2021): 1-20. [CrossRef] [PubMed] [Google Scholar]
  • Asmaria, Talitha, Djusman Sajuti, and Khusnul Ain. “3D printed PLA of gallbladder for virtual surgery planning.” In AIP Conference Proceedings, vol. 2232, no. 1. AIP Publishing, 2020. [Google Scholar]
  • Serris, Ioannis, Panagiotis Serris, Kathleen M. Frey, and Hyunah Cho. “Development of 3D-printed layered PLGA films for drug delivery and evaluation of drug release behaviors.” AAPS PharmSciTech 21 (2020): 1-15. [CrossRef] [Google Scholar]
  • Singh, Mahima, and Sriramakamal Jonnalagadda. “Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications.” Journal of Materials Science: Materials in Medicine 32 (2021): 1-13. [CrossRef] [PubMed] [Google Scholar]
  • Derakhshanfar, Soroosh, Rene Mbeleck, Kaige Xu, Xingying Zhang, Wen Zhong, and Malcolm Xing. “3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances.” Bioactive materials 3, no. 2 (2018): 144-156. [CrossRef] [PubMed] [Google Scholar]
  • Hospodiuk, Monika, Madhuri Dey, Donna Sosnoski, and Ibrahim T. Ozbolat. “The bioink: A comprehensive review on bioprintable materials.” Biotechnology advances 35, no. 2 (2017): 217-239. [CrossRef] [PubMed] [Google Scholar]
  • Ashammakhi, Nureddin, Anwarul Hasan, Outi Kaarela, Batzaya Byambaa, Amir Sheikhi, Akhilesh K. Gaharwar, and Ali Khademhosseini. “Advancing frontiers in bone bioprinting.” Advanced healthcare materials 8, no. 7 (2019): 1801048. [CrossRef] [Google Scholar]
  • Bai, Xin, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, and Xue-Qing Zhang. “Bioactive hydrogels for bone regeneration.” Bioactive materials 3, no. 4 (2018): 401-417. [CrossRef] [PubMed] [Google Scholar]
  • Seok, Ji Min, Jae Eun Jeong, Sang Jin Lee, Seung Hyun Im, Jun Hee Lee, Wan Doo Kim, Kangwon Lee, and Su A. Park. “Bio-plotted hydrogel scaffold with core and sheath strand-enhancing mechanical and biological properties for tissue regeneration.” Colloids and Surfaces B: Biointerfaces 205 (2021): 111919. [CrossRef] [Google Scholar]
  • Nguyen, Duong, Daniel A. Hägg, Alma Forsman, Josefine Ekholm, Puwapong Nimkingratana, Camilla Brantsing, Theodoros Kalogeropoulos et al. “Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink.” Scientific reports 7, no. 1 (2017): 658. [CrossRef] [PubMed] [Google Scholar]
  • Isaeva, E. V., E. E. Beketov, V. V. Yuzhakov, N. V. Arguchinskaya, A. A. Kisel, E. P. Malakhov, T. S. Lagoda et al. “The use of collagen with high concentration in cartilage tissue engineering by means of 3D-bioprinting.” Cell and Tissue Biology 15 (2021): 493-502. [CrossRef] [Google Scholar]
  • Merceron, Tyler K., Morgan Burt, Young-Joon Seol, Hyun-Wook Kang, Sang Jin Lee, James J. Yoo, and Anthony Atala. “A 3D bioprinted complex structure for engineering the muscle–tendon unit.” Biofabrication 7, no. 3 (2015): 035003. [CrossRef] [PubMed] [Google Scholar]
  • Dickman, Christopher TD, Valerio Russo, Katherine Thain, Sheng Pan, Simon T. Beyer, Konrad Walus, Spiro Getsios, Tamer Mohamed, and Sam J. Wadsworth. “Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology.” The FASEB Journal 34, no. 1 (2020): 1652-1664. [CrossRef] [PubMed] [Google Scholar]
  • Jin, Qianheng, Yi Fu, Guangliang Zhang, Lei Xu, Guangzhe Jin, Linfeng Tang, Jihui Ju, Weixin Zhao, and Ruixing Hou. “Nanofiber electrospinning combined with rotary bioprinting for fabricating small-diameter vessels with endothelium and smooth muscle.” Composites Part B: Engineering 234 (2022): 109691. [CrossRef] [Google Scholar]
  • Hann, Sung Yun, Haitao Cui, Timothy Esworthy, Xuan Zhou, Se-jun Lee, Michael W. Plesniak, and Lijie Grace Zhang. “Dual 3D printing for vascularized bone tissue regeneration.” Acta Biomaterialia 123 (2021): 263-274. [CrossRef] [PubMed] [Google Scholar]
  • Daikuara, Luciana Y., Xifang Chen, Zhilian Yue, Danielle Skropeta, Fiona M. Wood, Mark W. Fear, and Gordon G. Wallace. “3D bioprinting constructs to facilitate skin regeneration.” Advanced Functional Materials 32, no. 3 (2022): 2105080. [CrossRef] [Google Scholar]
  • Ma, Jingge, Chen Qin, Jinfu Wu, Hongjian Zhang, Hui Zhuang, Meng Zhang, Zhaowenbin Zhang et al. “3D printing of strontium silicate microcylinder‐containing multicellular biomaterial inks for vascularized skin regeneration.” Advanced Healthcare Materials 10, no. 16 (2021): 2100523. [CrossRef] [Google Scholar]
  • Liu, Suihong, Liguo Sun, Haiguang Zhang, Qingxi Hu, Yahao Wang, and Murugan Ramalingam. “High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering.” International Journal of Biological Macromolecules 166 (2021): 1280-1291. [CrossRef] [PubMed] [Google Scholar]
  • Ye, Wensong, Haibing Li, Kang Yu, Chaoqi Xie, Peng Wang, Yating Zheng, Peng Zhang et al. “3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels.” Materials & Design 192 (2020): 108757. [CrossRef] [Google Scholar]
  • Liu, Xiao-Yin, Chong Chen, Hai-Huan Xu, Yu-sheng Zhang, Lin Zhong, Nan Hu, Xiao-Li Jia et al. “Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury.” Regenerative biomaterials 8, no. 6 (2021): rbab047. [Google Scholar]
  • Liu, Nanbo, Xing Ye, Bin Yao, Mingyi Zhao, Peng Wu, Guihuan Liu, Donglin Zhuang et al. “Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration.” Bioactive Materials 6, no. 5 (2021): 1388-1401. [CrossRef] [PubMed] [Google Scholar]
  • Goo, Hyun Woo, Sang Joon Park, and Shi-Joon Yoo. “Advanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed reality, virtual reality, and three-dimensional printing.” Korean journal of radiology 21, no. 2 (2020): 133-145. [CrossRef] [PubMed] [Google Scholar]
  • Al Jabbari, Odeaa, Walid K. Abu Saleh, Avni P. Patel, Stephen R. Igo, and Michael J. Reardon. “Use of three‐dimensional models to assist in the resection of malignant cardiac tumors.” Journal of cardiac surgery 31, no. 9 (2016): 581-583. [CrossRef] [PubMed] [Google Scholar]
  • Gardin, Chiara, Letizia Ferroni, Christian Latremouille, Juan Carlos Chachques, Dinko Mitrečić, and Barbara Zavan. “Recent applications of three dimensional printing in cardiovascular medicine.” Cells 9, no. 3 (2020): 742. [CrossRef] [PubMed] [Google Scholar]
  • Lee, A. R. H. A., A. R. Hudson, D. J. Shiwarski, J. W. Tashman, T. J. Hinton, S. Yerneni, J. M. Bliley, P. G. Campbell, and A. W. Feinberg. “3D bioprinting of collagen to rebuild components of the human heart.” Science 365, no. 6452 (2019): 482-487. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Yu Shrike, Andrea Arneri, Simone Bersini, Su-Ryon Shin, Kai Zhu, Zahra Goli-Malekabadi, Julio Aleman et al. “Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a- chip.” Biomaterials 110 (2016): 45-59. [CrossRef] [PubMed] [Google Scholar]
  • Yang, Huayu, Lejia Sun, Yuan Pang, Dandan Hu, Haifeng Xu, Shuangshuang Mao, Wenbo Peng et al. “Three- dimensional bioprinted hepatorganoids prolong survival of mice with liver failure.” Gut 70, no. 3 (2021): 567-574. [CrossRef] [PubMed] [Google Scholar]
  • Mao, Qijiang, Yifan Wang, Yang Li, Sarun Juengpanich, Wenhuan Li, Mingyu Chen, Jun Yin, Jianzhong Fu, and Xiujun Cai. “Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting.” Materials Science and Engineering: C 109 (2020): 110625. [CrossRef] [Google Scholar]
  • Liu, Xiao, Sarah‐Sophia D. Carter, Max Jurie Renes, Juewan Kim, Darling Macarena Rojas‐Canales, Daniella Penko, Cameron Angus et al. “Development of a coaxial 3D printing platform for biofabrication of implantable islet‐containing constructs.” Advanced healthcare materials 8, no. 7 (2019): 1801181. [CrossRef] [Google Scholar]
  • Tebyanian, Hamid, Ali Karami, Mohammad Reza Nourani, Ebrahim Motavallian, Aref Barkhordari, Mohsen Yazdanian, and Alexander Seifalian. “Lung tissue engineering: An update.” Journal of Cellular Physiology 234, no. 11 (2019): 19256-19270. [CrossRef] [PubMed] [Google Scholar]
  • Huang, Li, Wei Yuan, Yue Hong, Suna Fan, Xiang Yao, Tao Ren, Lujie Song, Gesheng Yang, and Yaopeng Zhang. “3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells.” Cellulose 28 (2021): 241-257. [CrossRef] [PubMed] [Google Scholar]
  • Filippou, Valeria, and Charalampos Tsoumpas. “Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound.” Medical physics 45, no. 9 (2018): e740-e760. [CrossRef] [PubMed] [Google Scholar]
  • Park, Jae-Hyun, Jeong-Kee Yoon, Jung Bok Lee, Young Min Shin, Kang-Woog Lee, Sang-Woo Bae, JunHee Lee et al. “Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes.” Scientific reports 9, no. 1 (2019): 2103. [CrossRef] [PubMed] [Google Scholar]
  • Kim, In Gul, Su A. Park, Shin-Hyae Lee, Ji Suk Choi, Hana Cho, Sang Jin Lee, Yoo-Wook Kwon, and Seong Keun Kwon. “Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes.” Scientific Reports 10, no. 1 (2020): 4326. [CrossRef] [PubMed] [Google Scholar]
  • Zhou, Huan, and Sarit B. Bhaduri. “3D printing in the research and development of medical devices.” In Biomaterials in translational medicine, pp. 269-289. Academic Press, 2019. [CrossRef] [Google Scholar]
  • Grauer, Dan. “Quality in orthodontics: the role of customized appliances.” Journal of Esthetic and Restorative Dentistry 33, no. 1 (2021): 253-258. [CrossRef] [PubMed] [Google Scholar]
  • Redaelli, Davide Felice, Valentina Abbate, Fabio Alexander Storm, Alfredo Ronca, Andrea Sorrentino, Cristina De Capitani, Emilia Biffi, Luigi Ambrosio, Giorgio Colombo, and Paolo Fraschini. “3D printing orthopedic scoliosis braces: a test comparing FDM with thermoforming.” The International Journal of Advanced Manufacturing Technology 111, no. 5-6 (2020): 1707-1720. [CrossRef] [Google Scholar]
  • Thurzo, Andrej, Filip Kočiš, Bohuslav Novák, Ladislav Czako, and Ivan Varga. “Three-dimensional modeling and 3D printing of biocompatible orthodontic power-arm design with clinical application.” Applied Sciences 11, no. 20 (2021): 9693. [CrossRef] [Google Scholar]
  • Zuniga, Jorge M., Jean Peck, Rakesh Srivastava, Dimitrios Katsavelis, and Adam Carson. “An open source 3D- printed transitional hand prosthesis for children.” JPO: Journal of Prosthetics and Orthotics 28, no. 3 (2016): 103-108. [CrossRef] [Google Scholar]
  • Zuniga, Jorge M. “3D printed antibacterial prostheses.” Applied Sciences 8, no. 9 (2018): 1651. [CrossRef] [Google Scholar]
  • Honigmann, Philipp, Neha Sharma, Ralf Schumacher, Jasmine Rueegg, Mathias Haefeli, and Florian Thieringer. “In-hospital 3D printed scaphoid prosthesis using medical-grade polyetheretherketone (PEEK) biomaterial.” BioMed Research International 2021 (2021). [CrossRef] [PubMed] [Google Scholar]
  • Xiao, Ran, Xiaobin Feng, Rong Fan, Sijie Chen, Jian Song, Libo Gao, and Yang Lu. “3D printing of titanium- coated gradient composite lattices for lightweight mandibular prosthesis.” Composites Part B: Engineering 193 (2020): 108057. [CrossRef] [Google Scholar]
  • Tsoulfas, Georgios, Petros I. Bangeas, Jasjit S. Suri, and Vasileios N. Papadopoulos. “Introduction: the role of 3D printing in surgery.” In 3D Printing: Applications in Medicine and Surgery, pp. 1-6. Elsevier, 2020. [Google Scholar]
  • Chen, Yigang, Linjie Bian, Hong Zhou, Danping Wu, Jie Xu, Chen Gu, Xinqi Fan et al. “Usefulness of three- dimensional printing of superior mesenteric vessels in right hemicolon cancer surgery.” Scientific reports 10, no. 1 (2020): 11660. [CrossRef] [PubMed] [Google Scholar]
  • Bianchi, Giuseppe, Tommaso Frisoni, Benedetta Spazzoli, Alessandra Lucchese, and Davide Donati. “Computer assisted surgery and 3D printing in orthopaedic oncology: A lesson learned by cranio-maxillo-facial surgery.” Applied Sciences 11, no. 18 (2021): 8584. [CrossRef] [Google Scholar]
  • Melocchi, Alice, Marco Uboldi, Alessandra Maroni, Anastasia Foppoli, Luca Palugan, Lucia Zema, and Andrea Gazzaniga. “3D printing by fused deposition modeling of single-and multi-compartment hollow systems for oral delivery–A review.” International journal of pharmaceutics 579 (2020): 119155. [CrossRef] [PubMed] [Google Scholar]
  • Vo, Anh Q., Jiaxiang Zhang, Dinesh Nyavanandi, Suresh Bandari, and Michael A. Repka. “Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine.” Carbohydrate polymers 246 (2020): 116519. [CrossRef] [PubMed] [Google Scholar]
  • Lee, Jaemin, Chanwoo Song, Inhwan Noh, Sangbyeong Song, and Yun-Seok Rhee. “Hot-melt 3D extrusion for the fabrication of customizable modified-release solid dosage forms.” Pharmaceutics 12, no. 8 (2020): 738. [CrossRef] [PubMed] [Google Scholar]
  • Awad, Atheer, Fabrizio Fina, Sarah J. Trenfield, Pavanesh Patel, Alvaro Goyanes, Simon Gaisford, and Abdul W. Basit. “3D printed pellets (miniprintlets): A novel, multi-drug, controlled release platform technology.” Pharmaceutics 11, no. 4 (2019): 148. [CrossRef] [PubMed] [Google Scholar]
  • Robles-Martinez, Pamela, Xiaoyan Xu, Sarah J. Trenfield, Atheer Awad, Alvaro Goyanes, Richard Telford, Abdul W. Basit, and Simon Gaisford. “3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method.” Pharmaceutics 11, no. 6 (2019): 274. [CrossRef] [PubMed] [Google Scholar]
  • Thakkar, Rishi, Amit Raviraj Pillai, Jiaxiang Zhang, Yu Zhang, Vineet Kulkarni, and Mohammed Maniruzzaman. “Novel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling tool.” Polymers 12, no. 9 (2020): 1872. [Google Scholar]
  • Yu, Ilhan, and Roland K. Chen. “A feasibility study of an extrusion-based fabrication process for personalized drugs.” Journal of Personalized Medicine 10, no. 1 (2020): 16. [CrossRef] [PubMed] [Google Scholar]
  • Musazzi, Umberto M., Francesca Selmin, Marco A. Ortenzi, Garba Khalid Mohammed, Silvia Franzé, Paola Minghetti, and Francesco Cilurzo. “Personalized orodispersible films by hot melt ram extrusion 3D printing.” International journal of pharmaceutics 551, no. 1-2 (2018): 52-59. [CrossRef] [PubMed] [Google Scholar]
  • Liang, Kun, Simone Carmone, Davide Brambilla, and Jean-Christophe Leroux. “3D printing of a wearable personalized oral delivery device: A first-in-human study.” Science advances 4, no. 5 (2018): eaat2544. [CrossRef] [PubMed] [Google Scholar]
  • Reddy Dumpa, Nagi, Suresh Bandari, and Michael A Repka. “Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing.” Pharmaceutics 12, no. 1 (2020): 52. [CrossRef] [PubMed] [Google Scholar]
  • Yan, Ting-Ting, Zhu-Fen Lv, Pan Tian, Min-Mei Lin, Wei Lin, Si-Yu Huang, and Yan-Zhong Chen. “Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy.” Drug development and industrial pharmacy 46, no. 4 (2020): 531-538. [CrossRef] [PubMed] [Google Scholar]
  • Gao, Ge, Minjun Ahn, Won-Woo Cho, Byoung-Soo Kim, and Dong-Woo Cho. “3D printing of pharmaceutical application: drug screening and drug delivery.” Pharmaceutics 13, no. 9 (2021): 1373. [CrossRef] [PubMed] [Google Scholar]
  • Vaidya, Manasi. “Startups tout commercially 3D-printed tissue for drug screening.” biomedicine 7, no. 8 (2015): 3. [Google Scholar]
  • Nelson, Bryn. “3‐dimensional bioprinting makes its mark: New tissue and organ printing methods are yielding critical new tools for the laboratory and clinic.” Cancer cytopathology 123, no. 4 (2015): 203-204. [CrossRef] [PubMed] [Google Scholar]
  • Ma, Xuanyi, Justin Liu, Wei Zhu, Min Tang, Natalie Lawrence, Claire Yu, Maling Gou, and Shaochen Chen. “3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling.” Advanced drug delivery reviews 132 (2018): 235-251. [CrossRef] [PubMed] [Google Scholar]
  • Ozbolat, Ibrahim T., Weijie Peng, and Veli Ozbolat. “Application areas of 3D bioprinting.” Drug discovery today 21, no. 8 (2016): 1257-1271. [CrossRef] [PubMed] [Google Scholar]
  • Clevers, Hans. “Modeling development and disease with organoids.” Cell 165, no. 7 (2016): 1586-1597. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Boyang, Anastasia Korolj, Benjamin Fook Lun Lai, and Milica Radisic. “Advances in organ-on-a-chip engineering.” Nature Reviews Materials 3, no. 8 (2018): 257-278. [CrossRef] [Google Scholar]
  • Nadhif, Muhammad Hanif, Hanif Assyarify, Muhammad Irsyad, Arindha R. Pramesti, and Muhammad Suhaeri. “Recent advances in 3D printed wound dressings.” In AIP Conference Proceedings, vol. 2344, no. 1. AIP Publishing, 2021. [Google Scholar]
  • Ilhan, Elif, Sumeyye Cesur, Ece Guler, Fadime Topal, Deniz Albayrak, Mehmet Mucahit Guncu, Muhammet Emin Cam et al. “Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material.” International Journal of Biological Macromolecules 161 (2020): 1040-1054. [CrossRef] [PubMed] [Google Scholar]
  • Spicer, Christopher D. “Hydrogel scaffolds for tissue engineering: The importance of polymer choice.” Polymer Chemistry 11, no. 2 (2020): 184-219. [Google Scholar]
  • Khansari, Maziyar M., Lioudmila V. Sorokina, Prithviraj Mukherjee, Farrukh Mukhtar, Mostafa Rezazadeh Shirdar, Mahnaz Shahidi, and Tolou Shokuhfar. “Classification of hydrogels based on their source: A review and application in stem cell regulation.” Jom 69 (2017): 1340-1347. [CrossRef] [Google Scholar]
  • El-Sherbiny, Ibrahim M., and Magdi H. Yacoub. “Hydrogel scaffolds for tissue engineering: Progress and challenges.” Global Cardiology Science and Practice 2013, no. 3 (2013): 38. [CrossRef] [Google Scholar]
  • Yan, Huiqiong, Xiuqiong Chen, Meixi Feng, Zaifeng Shi, Dashuai Zhang, and Qiang Lin. “Layer-by- layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering.” Materials Letters 209 (2017): 492-496. [CrossRef] [Google Scholar]
  • He, Jiankang, Ruomeng Chen, Yongjie Lu, Li Zhan, Yaxiong Liu, Dichen Li, and Zhongmin Jin. “Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.” Materials Science and Engineering: C 59 (2016): 53-60. [CrossRef] [Google Scholar]
  • Vickers, Neil J. “Animal communication: when i’m calling you, will you answer too?.” Current biology 27, no. 14 (2017): R713-R715. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen, Peter K., William Gao, Saloni D. Patel, Zain Siddiqui, Saul Weiner, Emi Shimizu, Biplab Sarkar, and Vivek A. Kumar. “Self-assembly of a dentinogenic peptide hydrogel.” ACS omega 3, no. 6 (2018): 5980-5987. [CrossRef] [PubMed] [Google Scholar]
  • Ergul, Necdet Mekki, Semra Unal, Ilyas Kartal, Cevriye Kalkandelen, Nazmi Ekren, Osman Kilic, Lin Chi-Chang, and Oguzhan Gunduz. “3D printing of chitosan/poly (vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering.” Polymer Testing 79 (2019): 106006. [Google Scholar]
  • Lode, Anja, Michael Meyer, Sophie Brüggemeier, Birgit Paul, Hagen Baltzer, Michaela Schröpfer, Claudia Winkelmann, Frank Sonntag, and Michael Gelinsky. “Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions.” Biofabrication 8, no. 1 (2016): 015015. [CrossRef] [PubMed] [Google Scholar]
  • Jang, Tae-Sik, Hyun-Do Jung, Houwen Matthew Pan, Win Tun Han, Shengyang Chen, and Juha Song. “3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering.” International Journal of Bioprinting 4, no. 1 (2018). [PubMed] [Google Scholar]
  • Wahab, Eta, Alina Shamsuddinb, Wan Nurul Karimah Wan Ahmadc, Nurazwa Ahmadd, and Law Xin Weie. “Identifying future prospect of 3D bioprinting in Malaysia.” Journal of Critical Reviews 7, no. 8 (2020). [Google Scholar]
  • Williams, David. “Revisiting the definition of biocompatibility.” Medical device technology 14, no. 8 (2003): 10-13. [Google Scholar]
  • Saroia, Jabran, Wang Yanen, Qinghua Wei, Kun Zhang, Tingli Lu, and Bo Zhang. “A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective.” Bio-Design and Manufacturing 1 (2018): 265-279. [CrossRef] [Google Scholar]
  • Hutmacher, D. W., J. C. H. Goh, and S. H. Teoh. “An introduction to biodegradable materials for tissue engineering applications.” Annals-academy of medicine singapore 30, no. 2 (2001): 183-191. [Google Scholar]
  • Drury, Jeanie L., and David J. Mooney. “Hydrogels for tissue engineering: scaffold design variables and applications.” Biomaterials 24, no. 24 (2003): 4337-4351. [CrossRef] [PubMed] [Google Scholar]
  • Rouwkema, Jeroen, Nicolas C. Rivron, and Clemens A. van Blitterswijk. “Vascularization in tissue engineering.” Trends in biotechnology 26, no. 8 (2008): 434-441. [CrossRef] [PubMed] [Google Scholar]
  • Druecke, Daniel, Stefan Langer, Evert Lamme, Jeroen Pieper, Marija Ugarkovic, Hans Ulrich Steinau, and Heinz Herbert Homann. “Neovascularization of poly (ether ester) block‐copolymer scaffolds in vivo: Long‐term investigations using intravital fluorescent microscopy.” Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 68, no. 1 (2004): 10-18. [Google Scholar]
  • Yang, Shoufeng, Kah-Fai Leong, Zhaohui Du, and Chee-Kai Chua. “The design of scaffolds for use in tissue engineering. Part I. Traditional factors.” Tissue engineering 7, no. 6 (2001): 679-689. [CrossRef] [PubMed] [Google Scholar]
  • Leijten, Jeroen, Jungmok Seo, Kan Yue, Grissel Trujillo-de Santiago, Ali Tamayol, Guillermo U. Ruiz-Esparza, Su Ryon Shin et al. “Spatially and temporally controlled hydrogels for tissue engineering.” Materials Science and Engineering: R: Reports 119 (2017): 1-35. [CrossRef] [Google Scholar]
  • Bai, Xin, Mingzhu Gao, Sahla Syed, Jerry Zhuang, Xiaoyang Xu, and Xue-Qing Zhang. “Bioactive hydrogels for bone regeneration.” Bioactive materials 3, no. 4 (2018): 401-417. [CrossRef] [PubMed] [Google Scholar]
  • Goenka, Sumit, Vinayak Sant, and Shilpa Sant. “Graphene-based nanomaterials for drug delivery and tissue engineering.” Journal of Controlled Release 173 (2014): 75-88. [CrossRef] [PubMed] [Google Scholar]
  • Eivazzadeh-Keihan, Reza, Karim Khanmohammadi Chenab, Reza Taheri-Ledari, Jafar Mosafer, Seyed Masoud Hashemi, Ahad Mokhtarzadeh, Ali Maleki, and Michael R. Hamblin. “Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering.” Materials Science and Engineering: C 107 (2020): 110267. [CrossRef] [Google Scholar]
  • Lee, Jung-Hwan, and Hae-Won Kim. “Emerging properties of hydrogels in tissue engineering.” Journal of tissue engineering 9 (2018): 2041731418768285. [PubMed] [Google Scholar]
  • Vedadghavami, Armin, Farnaz Minooei, Mohammad Hossein Mohammadi, Sultan Khetani, Ahmad Rezaei Kolahchi, Shohreh Mashayekhan, and Amir Sanati-Nezhad. “Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.” Acta biomaterialia 62 (2017): 42-63. [CrossRef] [PubMed] [Google Scholar]
  • Kim, Youhwan, Hyojin Ko, Ik Keun Kwon, and Kwanwoo Shin. “Extracellular matrix revisited: roles in tissue engineering.” International neurourology journal 20, no. Suppl 1 (2016): S23. [PubMed] [Google Scholar]
  • Gregor, Aleš, Eva Filová, Martin Novák, Jakub Kronek, Hynek Chlup, Matěj Buzgo, Veronika Blahnová et al. “Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.” Journal of biological engineering 11, no. 1 (2017): 1-21. [CrossRef] [PubMed] [Google Scholar]
  • Zhang, Xiaoying, and Yangde Zhang. “Tissue engineering applications of three-dimensional bioprinting.” Cell biochemistry and biophysics 72 (2015): 777-782. [CrossRef] [PubMed] [Google Scholar]
  • Akther, Fahima, Peter Little, Zhiyong Li, Nam-Trung Nguyen, and Hang T. Ta. “Hydrogels as artificial matrices for cell seeding in microfluidic devices.” RSC advances 10, no. 71 (2020): 43682-43703. [CrossRef] [PubMed] [Google Scholar]
  • Mantha, Somasundar, Sangeeth Pillai, Parisa Khayambashi, Akshaya Upadhyay, Yuli Zhang, Owen Tao, Hieu M. Pham, and Simon D. Tran. “Smart hydrogels in tissue engineering and regenerative medicine.” Materials 12, no. 20 (2019): 3323. [CrossRef] [PubMed] [Google Scholar]
  • Lu, Qijin, Kavitha Ganesan, Dan T. Simionescu, and Narendra R. Vyavahare. “Novel porous aortic elastin and collagen scaffolds for tissue engineering.” Biomaterials 25, no. 22 (2004): 5227-5237. [CrossRef] [PubMed] [Google Scholar]
  • Chung, Johnson HY, Sina Naficy, Zhilian Yue, Robert Kapsa, Anita Quigley, Simon E. Moulton, and Gordon G. Wallace. “Bio-ink properties and printability for extrusion printing living cells.” Biomaterials Science 1, no. 7 (2013): 763-773. [CrossRef] [PubMed] [Google Scholar]
  • Jabbari, Esmaiel. “Challenges for natural hydrogels in tissue engineering.” Gels 5, no. 2 (2019): 30. [CrossRef] [PubMed] [Google Scholar]
  • Zhao, Hongbo, Min Liu, Yajie Zhang, Jingbo Yin, and Renjun Pei. “Nanocomposite hydrogels for tissue engineering applications.” Nanoscale 12, no. 28 (2020): 14976-14995. [CrossRef] [PubMed] [Google Scholar]
  • Stratton, Scott, Namdev B. Shelke, Kazunori Hoshino, Swetha Rudraiah, and Sangamesh G. Kumbar. “Bioactive polymeric scaffolds for tissue engineering.” Bioactive materials 1, no. 2 (2016): 93-108. [CrossRef] [PubMed] [Google Scholar]
  • Annabi, Nasim, Jason W. Nichol, Xia Zhong, Chengdong Ji, Sandeep Koshy, Ali Khademhosseini, and Fariba Dehghani. “Controlling the porosity and microarchitecture of hydrogels for tissue engineering.” Tissue Engineering Part B: Reviews 16, no. 4 (2010): 371-383. [CrossRef] [PubMed] [Google Scholar]
  • Tetsuka, Hiroyuki, and Su Ryon Shin. “Materials and technical innovations in 3D printing in biomedical applications.” Journal of Materials Chemistry B 8, no. 15 (2020): 2930-2950. [CrossRef] [PubMed] [Google Scholar]
  • Advincula, Rigoberto C., John Ryan C. Dizon, Eugene B. Caldona, Robert Andrew Viers, Francis Dave C. Siacor, Reymark D. Maalihan, and Alejandro H. Espera. “On the progress of 3D-printed hydrogels for tissue engineering.” MRS communications 11 (2021): 539-553. [CrossRef] [PubMed] [Google Scholar]
  • Martin, Victor, Isabel A. Ribeiro, Marta M. Alves, Lídia Gonçalves, Ricardo A. Claudio, Liliana Grenho, Maria H. Fernandes, Pedro Gomes, Catarina F. Santos, and Ana F. Bettencourt. “Engineering a multifunctional 3D- printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.” Materials science and engineering: C 101 (2019): 15-26. [CrossRef] [Google Scholar]
  • Murphy, Robert, David P. Walsh, Charles A. Hamilton, Sally-Ann Cryan, Marc in het Panhuis, and Andreas Heise. “Degradable 3D-printed hydrogels based on star-shaped copolypeptides.” Biomacromolecules 19, no. 7 (2018): 2691-2699. [CrossRef] [PubMed] [Google Scholar]
  • Wang, Pengrui, David Berry, Amy Moran, Frank He, Trevor Tam, Luwen Chen, and Shaochen Chen. “Controlled growth factor release in 3D‐printed hydrogels.” Advanced healthcare materials 9, no. 15 (2020): 1900977. [CrossRef] [Google Scholar]
  • Liu, Qiongqiong, Qingtao Li, Sheng Xu, Qiujian Zheng, and Xiaodong Cao. “Preparation and properties of 3D printed alginate–chitosan polyion complex hydrogels for tissue engineering.” Polymers 10, no. 6 (2018): 664. [Google Scholar]
  • Li, Jinhua, Chengtie Wu, Paul K. Chu, and Michael Gelinsky. “3D printing of hydrogels: Rational design strategies and emerging biomedical applications.” Materials Science and Engineering: R: Reports 140 (2020): 100543. [CrossRef] [Google Scholar]
  • Tessmar, Joerg K., and Achim M. Göpferich. “Customized PEG‐derived copolymers for tissue‐engineering applications.” Macromolecular bioscience 7, no. 1 (2007): 23-39. [CrossRef] [PubMed] [Google Scholar]
  • Christensen, Rie Kjær, Christoffer von Halling Laier, Aysel Kiziltay, Sandra Wilson, and Niels Bent Larsen. “3D printed hydrogel multiassay platforms for robust generation of engineered contractile tissues.” Biomacromolecules 21, no. 2 (2019): 356-365. [Google Scholar]
  • Mohanty, Soumyaranjan, Martin Alm, Mette Hemmingsen, Alireza Dolatshahi-Pirouz, Jon Trifol, Peter Thomsen, Martin Dufva, Anders Wolff, and Jenny Emnéus. “3D printed silicone–hydrogel scaffold with enhanced physicochemical properties.” Biomacromolecules 17, no. 4 (2016): 1321-1329. [CrossRef] [PubMed] [Google Scholar]
  • Janarthanan, Gopinathan, Hyun Soo Shin, In-Gul Kim, Pyung Ji, Eun-Jae Chung, Chibum Lee, and Insup Noh. “Self-crosslinking hyaluronic acid–carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering.” Biofabrication 12, no. 4 (2020): 045026. [CrossRef] [PubMed] [Google Scholar]
  • Ramiah, Previn, Lisa C. Du Toit, Yahya E. Choonara, Pierre PD Kondiah, and Viness Pillay. “Hydrogel- based bioinks for 3D bioprinting in tissue regeneration.” Frontiers in Materials 7 (2020): 76. [CrossRef] [Google Scholar]
  • Lee, A. R. H. A., A. R. Hudson, D. J. Shiwarski, J. W. Tashman, T. J. Hinton, S. Yerneni, J. M. Bliley, P. G. Campbell, and A. W. Feinberg. “3D bioprinting of collagen to rebuild components of the human heart.” Science 365, no. 6452 (2019): 482-487. [Google Scholar]
  • Zhang, Zimeng, Ruochen Liu, Herman Zepeda, Li Zeng, Jingjing Qiu, and Shiren Wang. “3D printing super strong hydrogel for artificial meniscus.” ACS Applied Polymer Materials 1, no. 8 (2019): 2023-2032. [CrossRef] [Google Scholar]
  • Xu, Yifan, Qinghua Meng, Xin Jin, Feng Liu, and Jianjun Yu. “Biodegradable scaffolds for urethra tissue engineering based on 3D printing.” ACS Applied Bio Materials 3, no. 4 (2020): 2007-2016. [CrossRef] [PubMed] [Google Scholar]
  • Benjamin, Aaron D., Reha Abbasi, Madison Owens, Robert J. Olsen, Danica J. Walsh, Thomas B. LeFevre, and James N. Wilking. “Light-based 3D printing of hydrogels with high-resolution channels.” Biomedical Physics & Engineering Express 5, no. 2 (2019): 025035. [CrossRef] [Google Scholar]
  • Zhang, Biao, Shiya Li, Hardik Hingorani, Ahmad Serjouei, Liraz Larush, Amol A. Pawar, Wei Huang Goh et al. “Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.” Journal of Materials Chemistry B 6, no. 20 (2018): 3246-3253. [CrossRef] [PubMed] [Google Scholar]
  • Shin, Sungchul, Hojung Kwak, and Jinho Hyun. “Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly (ethylene glycol)- tetraacrylate bio-ink.” ACS applied materials & interfaces 10, no. 28 (2018): 23573-23582. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh, Cheng-Tien, and Shan-hui Hsu. “Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting.” ACS applied materials & interfaces 11, no. 36 (2019): 32746-32757. [CrossRef] [PubMed] [Google Scholar]
  • Benjamin, Aaron D., Reha Abbasi, Madison Owens, Robert J. Olsen, Danica J. Walsh, Thomas B. LeFevre, and James N. Wilking. “Light-based 3D printing of hydrogels with high-resolution channels.” Biomedical Physics & Engineering Express 5, no. 2 (2019): 025035. [CrossRef] [Google Scholar]
  • Zhang, Biao, Shiya Li, Hardik Hingorani, Ahmad Serjouei, Liraz Larush, Amol A. Pawar, Wei Huang Goh et al. “Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing.” Journal of Materials Chemistry B 6, no. 20 (2018): 3246-3253. [CrossRef] [PubMed] [Google Scholar]
  • Hsieh, Cheng-Tien, and Shan-hui Hsu. “Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting.” ACS applied materials & interfaces 11, no. 36 (2019): 32746-32757. [CrossRef] [PubMed] [Google Scholar]
  • Shin, Sungchul, Hojung Kwak, and Jinho Hyun. “Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly (ethylene glycol)- tetraacrylate bio-ink.” ACS applied materials & interfaces 10, no. 28 (2018): 23573-23582. [CrossRef] [PubMed] [Google Scholar]
  • Chu, Honghui, Wenguang Yang, Lujing Sun, Shuxiang Cai, Rendi Yang, Wenfeng Liang, Haibo Yu, and Lianqing Liu. “4D printing: a review on recent progresses.” Micromachines 11, no. 9 (2020): 796. [CrossRef] [Google Scholar]
  • Choi, Jin, O-Chang Kwon, Wonjin Jo, Heon Ju Lee, and Myoung-Woon Moon. “4D printing technology: a review.” 3D Printing and Additive Manufacturing 2, no. 4 (2015): 159-167. [CrossRef] [Google Scholar]
  • Jilte, R.D., Kumar, R. and Ahmadi, M.H., 2019. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. Journal of Cleaner Production, 240, p.118131. [CrossRef] [Google Scholar]
  • Singh, A.P., Pradhan, N.R., Luhach, A.K., Agnihotri, S., Jhanjhi, N.Z., Verma, S., Ghosh, U. and Roy, D.S., 2020. A novel patient-centric architectural framework for blockchain-enabled healthcare applications. IEEE Transactions on Industrial Informatics, 17(8), pp.5779-5789. [Google Scholar]
  • Panda, S.K., Aggarwal, I., Kumar, H., Prasad, L., Kumar, A., Sharma, A., Vo, D.V.N., Van Thuan, D. and Mishra, V., 2021. Magnetite nanoparticles as sorbents for dye removal: a review. Environmental Chemistry Letters, 19, pp.2487-2525. [CrossRef] [Google Scholar]
  • Bashir, S., Thakur, A., Lgaz, H., Chung, I.M. and Kumar, A., 2020. Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: Insights from experimental and quantum chemical studies. Surfaces and Interfaces, 20, p.100542. [CrossRef] [Google Scholar]
  • Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D.S., Verma, R., Bhardwaj, P., Sharma, S. and Kumar, D., 2020. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules, 25(12), p.2812. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.