Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/bioconf/20248601014 | |
Published online | 12 January 2024 |
- Y.L. Becker, B. Duvvuri, P.R. Fortin, C. Lood, E. Boilard, The role of mitochondria in rheumatic diseases, Nature Reviews Rheumatology 18(11) (2022) 621-640. [CrossRef] [PubMed] [Google Scholar]
- P. Potluri, N. Yadava, I.E. Scheffler, The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH‐ubiquinone oxidoreductase), European journal of biochemistry 271(15) (2004) 3265-3273. [CrossRef] [PubMed] [Google Scholar]
- A. Tzagoloff, Mitochondria, Springer Science & Business Media2012. [Google Scholar]
- Y. Luo, J. Ma, W. Lu, The significance of mitochondrial dysfunction in cancer, International Journal of Molecular Sciences 21(16) (2020) 5598. [CrossRef] [PubMed] [Google Scholar]
- A.L. Lehniger, The mitochondrion, Wa Benjamin1964. [Google Scholar]
- A.M. Sterea, Y. El Hiani, The role of mitochondrial calcium signaling in the pathophysiology of cancer cells, Calcium signaling (2020) 747-770. [Google Scholar]
- L. Margulis, Symbiosis in cell evolution: Life and its environment on the early earth, (1981). [Google Scholar]
- H. Szeto, L. James, A. Atkinson, Mitochondrial pharmacology: its future is now, Wiley Online Library, 2014, pp. 629-633. [Google Scholar]
- B. Bhattacharjee, P.K. Pal, A. Chattopadhyay, D. Bandyopadhyay, Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study, Life sciences 244 (2020) 117324. [CrossRef] [PubMed] [Google Scholar]
- F.K. Choudhury, Mitochondrial redox metabolism: the epicenter of metabolism during cancer progression, Antioxidants 10(11) (2021) 1838. [CrossRef] [PubMed] [Google Scholar]
- D. Mendes, F. Peixoto, M.M. Oliveira, P.B. Andrade, R.A. Videira, Mitochondria research and neurodegenerative diseases: On the track to understanding the biological world of high complexity, Mitochondrion 65 (2022) 67-79. [CrossRef] [PubMed] [Google Scholar]
- F.R. Jornayvaz, G.I. Shulman, Regulation of mitochondrial biogenesis, Essays in biochemistry 47 (2010) 69-84. [CrossRef] [PubMed] [Google Scholar]
- G. Attardi, G. Schatz, Biogenesis of mitochondria, Annual review of cell biology 4(1) (1988) 289-331. [CrossRef] [PubMed] [Google Scholar]
- T. Valero, Editorial (thematic issue: Mitochondrial biogenesis: Pharmacological approaches), Current pharmaceutical design 20(35) (2014) 5507-5509. [CrossRef] [PubMed] [Google Scholar]
- M.W. Gray, G. Burger, B.F. Lang, The origin and early evolution of mitochondria, Genome biology 2 (2001) 1-5. [Google Scholar]
- E. Nisoli, E. Clementi, C. Paolucci, V. Cozzi, C. Tonello, C. Sciorati, R. Bracale, A. Valerio, M. Francolini, S. Moncada, Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide, Science 299(5608) (2003) 896-899. [CrossRef] [PubMed] [Google Scholar]
- R.A. Smith, R.C. Hartley, H.M. Cocheme, M.P. Murphy, Mitochondrial pharmacology, Trends in pharmacological sciences 33(6) (2012) 341-352. [CrossRef] [PubMed] [Google Scholar]
- D.C. Wallace, W. Fan, V. Procaccio, Mitochondrial energetics and therapeutics, Annual Review of Pathology: Mechanisms of Disease 5 (2010) 297-348. [CrossRef] [PubMed] [Google Scholar]
- Y. Yamada, H. Harashima, Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases, Advanced Drug Delivery Reviews 60(13-14) (2008) 1439-1462. [CrossRef] [PubMed] [Google Scholar]
- F.R. Palma, C. He, J.M. Danes, V. Paviani, D.R. Coelho, B.N. Gantner, M.G. Bonini, Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch, Antioxidants & Redox Signaling 32(10) (2020) 701-714. [CrossRef] [PubMed] [Google Scholar]
- O. Ighodaro, O. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid, Alexandria journal of medicine 54(4) (2018) 287-293. [CrossRef] [Google Scholar]
- A.K. Aranda-Rivera, A. Cruz-Gregorio, Y.L. Arancibia-Hernández, E.Y. Hernández-Cruz, J. Pedraza-Chaverri, RONS and oxidative stress: An overview of basic concepts, Oxygen 2(4) (2022) 437-478. [CrossRef] [Google Scholar]
- C. Mammucari, M. Patron, V. Granatiero, R. Rizzuto, Molecules and roles of mitochondrial calcium signaling, Biofactors 37(3) (2011) 219-227. [CrossRef] [PubMed] [Google Scholar]
- D.A. Harris, A. Das, Control of mitochondrial ATP synthesis in the heart, Biochemical journal 280(Pt 3) (1991) 561. [CrossRef] [PubMed] [Google Scholar]
- D.R. Green, J.C. Reed, Mitochondria and apoptosis, science 281(5381) (1998) 1309-1312. [CrossRef] [PubMed] [Google Scholar]
- M.O. Hengartner, The biochemistry of apoptosis, Nature 407(6805) (2000) 770-776. [CrossRef] [PubMed] [Google Scholar]
- T. Than, S. Win, N. Kaplowitz, In vitro assays of mitochondrial function/dysfunction, Clinical Pharmacology & Therapeutics 96(6) (2014) 665-668. [CrossRef] [PubMed] [Google Scholar]
- Q. Feng, G. Li, W. Xia, G. Dai, J. Zhou, Y. Xu, D. Liu, G. Zhang, The anti-aging effects of Renshen Guben on thyrotoxicosis mice: improving immunosenescence, hypoproteinemia, lipotoxicity, and intestinal flora, Frontiers in Immunology 13 (2022) 983501. [Google Scholar]
- X. Wang, H. Lu, M. Li, Z. Zhang, Z. Wei, P. Zhou, Y. Cao, D. Ji, W. Zou, Research development and the prospect of animal models of mitochondrial DNA-related mitochondrial diseases, Analytical Biochemistry (2023) 115122. [Google Scholar]
- D.M. Oliver, P.H. Reddy, Small molecules as therapeutic drugs for Alzheimer’s disease, Molecular and Cellular Neuroscience 96 (2019) 47-62. [CrossRef] [Google Scholar]
- M.T. Lin, M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature 443(7113) (2006) 787-795. [CrossRef] [PubMed] [Google Scholar]
- S. Avula, S. Parikh, S. Demarest, J. Kurz, A. Gropman, Treatment of mitochondrial disorders, Current treatment options in neurology 16 (2014) 1-20. [CrossRef] [Google Scholar]
- P. Jin, J. Jiang, L. Zhou, Z. Huang, E.C. Nice, C. Huang, L. Fu, Mitochondrial adaptation in cancer drug resistance: Prevalence, mechanisms, and management, Journal of Hematology & Oncology 15(1) (2022) 1-42. [CrossRef] [Google Scholar]
- J. Zhang, Q. Wang, C. Xu, Y. Lu, H. Hu, B. Qin, Y. Wang, D. He, C. Li, X. Yu, MitoTEMPO prevents oxalate induced injury in NRK-52E cells via inhibiting mitochondrial dysfunction and modulating oxidative stress, Oxidative medicine and cellular longevity 2017 (2017). [Google Scholar]
- S. Hersh, Fast-tracking the development of effective therapeutics in mitochondrial medicine, Clinical Pharmacology and Therapeutics 96(6) (2014) 641-643. [CrossRef] [PubMed] [Google Scholar]
- S. Farsinejad, Z. Gheisary, S. Ebrahimi Samani, A.M. Alizadeh, Mitochondrial targeted peptides for cancer therapy, Tumor Biology 36 (2015) 5715-5725. [CrossRef] [PubMed] [Google Scholar]
- O. C Ubah, H. M Wallace, Cancer therapy: Targeting mitochondria and other sub-cellular organelles, Current pharmaceutical design 20(2) (2014) 201-222. [CrossRef] [PubMed] [Google Scholar]
- S.-B. Ong, D.J. Hausenloy, Mitochondrial morphology and cardiovascular disease, Cardiovascular research 88(1) (2010) 16-29. [CrossRef] [PubMed] [Google Scholar]
- R. S Carreira, P. Lee, R. A Gottlieb, Mitochondrial therapeutics for cardioprotection, Current pharmaceutical design 17(20) (2011) 2017-2035. [CrossRef] [PubMed] [Google Scholar]
- J.-S. Kim, L. He, J.J. Lemasters, Mitochondrial permeability transition: a common pathway to necrosis and apoptosis, Biochemical and biophysical research communications 304(3) (2003) 463-470. [CrossRef] [PubMed] [Google Scholar]
- R. Scherz-Shouval, Z. Elazar, ROS, mitochondria and the regulation of autophagy, Trends in cell biology 17(9) (2007) 422-427. [CrossRef] [PubMed] [Google Scholar]
- M. Forte, L. Schirone, P. Ameri, C. Basso, D. Catalucci, J. Modica, C. Chimenti, L. Crotti, G. Frati, S. Rubattu, The role of mitochondrial dynamics in cardiovascular diseases, British journal of pharmacology 178(10) (2021) 2060-2076. [CrossRef] [PubMed] [Google Scholar]
- H. Shen, M. Yu, M. Tsoli, C. Chang, S. Joshi, J. Liu, S. Ryall, Y. Chornenkyy, R. Siddaway, C. Hawkins, Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas, Neuro- oncology 22(1) (2020) 139-151. [CrossRef] [PubMed] [Google Scholar]
- X. Guo, N. Yang, W. Ji, H. Zhang, X. Dong, Z. Zhou, L. Li, H.M. Shen, S.Q. Yao, W. Huang, Mito‐bomb: targeting mitochondria for cancer therapy, Advanced Materials 33(43) (2021) 2007778. [CrossRef] [Google Scholar]
- D.C. Wallace, Mitochondria and cancer, Nature Reviews Cancer 12(10) (2012) 685-698. [CrossRef] [PubMed] [Google Scholar]
- J. Ellinger, A. Gromes, M. Poss, M. Brüggemann, D. Schmidt, N. Ellinger, Y. Tolkach, D. Dietrich, G. Kristiansen, S.C. Müller, Systematic expression analysis of the mitochondrial complex III subunits identifies UQCRC1 as biomarker in clear cell renal cell carcinoma, Oncotarget 7(52) (2016) 86490. [CrossRef] [PubMed] [Google Scholar]
- H.-S. Jang, M.R. Noh, J. Kim, B.J. Padanilam, Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases, Frontiers in medicine 7 (2020) 65. [CrossRef] [PubMed] [Google Scholar]
- M. Kompare, W.B. Rizzo, Mitochondrial fatty-acid oxidation disorders, Seminars in pediatric neurology, Elsevier, 2008, pp. 140-149. [Google Scholar]
- R.J. Wanders, G. Visser, S. Ferdinandusse, F.M. Vaz, R.H. Houtkooper, Mitochondrial fatty acid oxidation disorders: laboratory diagnosis, pathogenesis, and the complicated route to treatment, Journal of Lipid and Atherosclerosis 9(3) (2020) 313. [Google Scholar]
- M.J. McKeage, L. Maharaj, S.J. Berners-Price, Mechanisms of cytotoxicity and antitumor activity of gold (I) phosphine complexes: the possible role of mitochondria, Coordination Chemistry Reviews 232(1-2) (2002) 127-135. [CrossRef] [Google Scholar]
- W. Liu, R. Gust, Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs, Coordination Chemistry Reviews 329 (2016) 191-213. [CrossRef] [Google Scholar]
- L. Vela, M. Contel, L. Palomera, G. Azaceta, I. Marzo, Iminophosphorane–organogold (III) complexes induce cell death through mitochondrial ROS production, Journal of inorganic biochemistry 105(10) (2011) 1306-1313. [CrossRef] [PubMed] [Google Scholar]
- Y. Yang, S. Karakhanova, W. Hartwig, J.G. D’Haese, P.P. Philippov, J. Werner, A.V. Bazhin, Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy, Journal of cellular physiology 231(12) (2016) 2570-2581. [CrossRef] [PubMed] [Google Scholar]
- C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Advances in copper complexes as anticancer agents, Chemical reviews 114(1) (2014) 815-862. [CrossRef] [PubMed] [Google Scholar]
- D. Kaewwichit, V. Aksornkitti, R. Rojanathanes, A. Sereemaspun, P. Thamyongkit, Synthesis and structure- property relationship of lipoic acid-containing porphyrin derivatives for mitochondria-targeting applications, Inorganica Chimica Acta 471 (2018) 305-309. [CrossRef] [Google Scholar]
- S.J. Berners-Price, P.J. Sadler, Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity, Bioinorganic Chemistry, Springer 2005, pp. 27-102. [Google Scholar]
- A.D. Munday, A. Sriratana, J.S. Hill, S.B. Kahl, P. Nagley, Mitochondria are the functional intracellular target for a photosensitizing boronated porphyrin, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1311(1) (1996) 1-4. [CrossRef] [Google Scholar]
- Q. Huang, L. Zhan, H. Cao, J. Li, Y. Lyu, X. Guo, J. Zhang, L. Ji, T. Ren, J. An, Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways, Autophagy 12(6) (2016) 999-1014. [CrossRef] [PubMed] [Google Scholar]
- D.C. Chan, Mitochondria: dynamic organelles in disease, aging, and development, Cell 125(7) (2006) 1241-1252. [Google Scholar]
- X. Wang, W. Wang, L. Li, G. Perry, H.-g. Lee, X. Zhu, Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8) (2014) 1240-1247. [CrossRef] [Google Scholar]
- M. Adebayo, S. Singh, A.P. Singh, S. Dasgupta, Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis, FASEB journal: official publication of the Federation of American Societies for Experimental Biology 35(6) (2021) e21620. [CrossRef] [Google Scholar]
- N. Apostolova, V.M. Victor, Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications, Antioxidants & redox signaling 22(8) (2015) 686-729. [CrossRef] [PubMed] [Google Scholar]
- J.S. Bhatti, G.K. Bhatti, P.H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1863(5) (2017) 1066-1077. [CrossRef] [Google Scholar]
- R. Marín, D.I. Chiarello, C. Abad, D. Rojas, F. Toledo, L. Sobrevia, Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1866(12) (2020) 165961. [CrossRef] [Google Scholar]
- E. Zhang, C. Zhang, Y. Su, T. Cheng, C. Shi, Newly developed strategies for multifunctional mitochondria- targeted agents in cancer therapy, Drug discovery today 16(3-4) (2011) 140-146. [CrossRef] [PubMed] [Google Scholar]
- X. Jing, F. Yang, C. Shao, K. Wei, M. Xie, H. Shen, Y. Shu, Role of hypoxia in cancer therapy by regulating the tumor microenvironment, Molecular cancer 18 (2019) 1-15. [PubMed] [Google Scholar]
- A.-M. Florea, D. Büsselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects, Cancers 3(1) (2011) 1351-1371. [Google Scholar]
- K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma, J.-I. Hayashi, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science 320(5876) (2008) 661-664. [CrossRef] [PubMed] [Google Scholar]
- A. Chatterjee, E. Mambo, D. Sidransky, Mitochondrial DNA mutations in human cancer, Oncogene 25(34) (2006) 4663-4674. [CrossRef] [PubMed] [Google Scholar]
- L.B. Sullivan, N.S. Chandel, Mitochondrial reactive oxygen species and cancer, Cancer & metabolism 2 (2014) 1-12. [CrossRef] [PubMed] [Google Scholar]
- D. Gorman, A. Drewry, Y.L. Huang, C. Sames, The clinical toxicology of carbon monoxide, Toxicology 187(1) (2003) 25-38. [CrossRef] [PubMed] [Google Scholar]
- S.-J. Lee, S.W. Ryter, J.-F. Xu, K. Nakahira, H.P. Kim, A.M. Choi, Y.S. Kim, Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation, American journal of respiratory cell and molecular biology 45(4) (2011) 867-873. [CrossRef] [PubMed] [Google Scholar]
- C. Taillé, J. El-Benna, S. Lanone, J. Boczkowski, R. Motterlini, Mitochondrial Respiratory Chain and NAD (P) H Oxidase Are Targets for theAntiproliferative Effect of Carbon Monoxide in Human Airway SmoothMuscle, Journal of Biological Chemistry 280(27) (2005) 25350-25360. [CrossRef] [Google Scholar]
- K. Dasuri, L. Zhang, J.N. Keller, Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis, Free Radical Biology and Medicine 62 (2013) 170-185. [Google Scholar]
- C.A. Piantadosi, Carbon Monoxide and Mitochondria, Carbon Monoxide in Drug Discovery: Basics, Pharmacology, and Therapeutic Potential (2022) 108-117. [Google Scholar]
- L.E. Otterbein, F.H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R.J. Davis, R.A. Flavell, A.M. Choi, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nature medicine 6(4) (2000) 422-428. [CrossRef] [PubMed] [Google Scholar]
- A. Aguilar, H. Zhou, J. Chen, L. Liu, L. Bai, D. McEachern, C.-Y. Yang, J. Meagher, J. Stuckey, S. Wang, A potent and highly efficacious Bcl-2/Bcl-xL inhibitor, Journal of medicinal chemistry 56(7) (2013) 3048-3067. [CrossRef] [PubMed] [Google Scholar]
- M. Roy, A. Vom, P. Czabotar, G. Lessene, Cell death and the mitochondria: therapeutic targeting of the BCL‐2 family‐driven pathway, British journal of pharmacology 171(8) (2014) 1973-1987. [CrossRef] [PubMed] [Google Scholar]
- A.J. Souers, J.D. Leverson, E.R. Boghaert, S.L. Ackler, N.D. Catron, J. Chen, B.D. Dayton, H. Ding, S.H. Enschede, W.J. Fairbrother, ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets, Nature medicine 19(2) (2013) 202-208. [CrossRef] [PubMed] [Google Scholar]
- M.D. Herman, T. Nyman, M. Welin, L. Lehtiö, S. Flodin, L. Trésaugues, T. Kotenyova, A. Flores, P. Nordlund, Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim, FEBS letters 582(25-26) (2008) 3590-3594. [CrossRef] [PubMed] [Google Scholar]
- L. Zhou, D.C. Chang, Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis, Journal of cell science 121(13) (2008) 2186-2196. [CrossRef] [PubMed] [Google Scholar]
- M. Jang, L. Cai, G.O. Udeani, K.V. Slowing, C.F. Thomas, C.W. Beecher, H.H. Fong, N.R. Farnsworth, A.D. Kinghorn, R.G. Mehta, Cancer chemopreventive activity of resveratrol, a natural product derived from grapes, Science 275(5297) (1997) 218-220. [CrossRef] [PubMed] [Google Scholar]
- I. Tinhofer, D. Bernhard, M. Senfter, G. Anether, M. Loeffler, G. Kroemer, R. Kofler, A. Csordas, R. Greil, Resveratrol, a tumor‐suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl‐2, The FASEB Journal 15(9) (2001) 1613-1615. [CrossRef] [PubMed] [Google Scholar]
- D. Hockenbery, G. Nuñez, C. Milliman, R.D. Schreiber, S.J. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature 348(6299) (1990) 334-336. [CrossRef] [PubMed] [Google Scholar]
- E. Bossy-Wetzel, D.D. Newmeyer, D.R. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, The EMBO journal 17(1) (1998) 37-49. [CrossRef] [PubMed] [Google Scholar]
- A.M. Schaefer, R. McFarland, E.L. Blakely, L. He, R.G. Whittaker, R.W. Taylor, P.F. Chinnery, D.M. Turnbull, Prevalence of mitochondrial DNA disease in adults, Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 63(1) (2008) 35-39. [Google Scholar]
- S.R. Bacman, S.L. Williams, S. Garcia, C.T. Moraes, Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease, Gene therapy 17(6) (2010) 713-720. [CrossRef] [PubMed] [Google Scholar]
- H. Vallance, G. Jeven, D. Wallace, M. Brown, A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation, Pediatric cardiology 25 (2004) 538-540. [CrossRef] [PubMed] [Google Scholar]
- M. Satoh, T. Kuroiwa, Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell, Experimental cell research 196(1) (1991) 137-140. [CrossRef] [PubMed] [Google Scholar]
- R.H. Haas, S. Parikh, M.J. Falk, R.P. Saneto, N.I. Wolf, N. Darin, B.H. Cohen, Mitochondrial disease: a practical approach for primary care physicians, Pediatrics 120(6) (2007) 1326-1333. [CrossRef] [PubMed] [Google Scholar]
- D. Li, X. Qu, K. Hou, Y. Zhang, Q. Dong, Y. Teng, J. Zhang, Y. Liu, PI3K/Akt is involved in bufalin-induced apoptosis in gastric cancer cells, Anti-cancer drugs 20(1) (2009) 59-64. [CrossRef] [PubMed] [Google Scholar]
- S. Yan, X. Qu, L. Xu, X. Che, Y. Ma, L. Zhang, Y. Teng, H. Zou, Y. Liu, Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells, Anti-cancer drugs 25(6) (2014) 683-689. [CrossRef] [PubMed] [Google Scholar]
- Z. Zhu, E. Li, Y. Liu, Y. Gao, H. Sun, Y. Wang, Z. Wang, X. Liu, Q. Wang, Y. Liu, Bufalin induces the apoptosis of acute promyelocytic leukemia cells via the downregulation of survivin expression, Acta Haematologica 128(3) (2012) 144-150. [CrossRef] [PubMed] [Google Scholar]
- P.-H. Yin, X. Liu, Y.-Y. Qiu, J.-f. Cai, J.-m. Qin, H.-R. Zhu, Q. Li, Anti-tumor activity and apoptosis-regulation mechanisms of bufalin in various cancers: new hope for cancer patients, Asian Pacific journal of cancer prevention 13(11) (2012) 5339-5343. [CrossRef] [PubMed] [Google Scholar]
- J. Pourahmad, M.-J. Hosseini, Application of isolated mitochondria in toxicological and clinical studies, Brieflands, 2012, pp. 703-704. [Google Scholar]
- A. Salimi, M.R. Neshat, P. Naserzadeh, J. Pourahmad, Mitochondrial permeability transition pore sealing agents and antioxidants protect oxidative stress and mitochondrial dysfunction induced by naproxen, diclofenac and celecoxib, Drug research 69(11) (2019) 598-605. [Google Scholar]
- G.A. Cortopassi, D. Shibata, N. Soong, N. Arnheim, A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues, Proceedings of the National Academy of Sciences 89(16) (1992) 7370-7374. [CrossRef] [PubMed] [Google Scholar]
- E. Kang, X. Wang, R. Tippner-Hedges, H. Ma, C.D. Folmes, N.M. Gutierrez, Y. Lee, C. Van Dyken, R. Ahmed, Y. Li, Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs, Cell stem cell 18(5) (2016) 625-636. [CrossRef] [PubMed] [Google Scholar]
- A. Bender, K.J. Krishnan, C.M. Morris, G.A. Taylor, A.K. Reeve, R.H. Perry, E. Jaros, J.S. Hersheson, J. Betts, T. Klopstock, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nature genetics 38(5) (2006) 515-517. [CrossRef] [PubMed] [Google Scholar]
- C.A. Lareau, L.S. Ludwig, C. Muus, S.H. Gohil, T. Zhao, Z. Chiang, K. Pelka, J.M. Verboon, W. Luo, E. Christian, Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling, Nature biotechnology 39(4) (2021) 451-461. [CrossRef] [PubMed] [Google Scholar]
- E. Bua, J. Johnson, A. Herbst, B. Delong, D. McKenzie, S. Salamat, J.M. Aiken, Mitochondrial DNA–deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers, The American Journal of Human Genetics 79(3) (2006) 469-480. [CrossRef] [Google Scholar]
- Q. Cui, J.-Q. Wang, Y.G. Assaraf, L. Ren, P. Gupta, L. Wei, C.R. Ashby Jr, D.-H. Yang, Z.-S. Chen, Modulating ROS to overcome multidrug resistance in cancer, Drug Resistance Updates 41 (2018) 1-25. [CrossRef] [PubMed] [Google Scholar]
- M. Cierlitza, H. Chauvistré, I. Bogeski, X. Zhang, A. Hauschild, M. Herlyn, D. Schadendorf, T. Vogt, A. Roesch, Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations, Experimental dermatology 24(2) (2015) 155-157. [CrossRef] [PubMed] [Google Scholar]
- E.L. Giddings, D.P. Champagne, M.-H. Wu, J.M. Laffin, T.M. Thornton, F. Valenca-Pereira, R. Culp-Hill, K.A. Fortner, N. Romero, J. East, Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance, Nature communications 12(1) (2021) 2804. [CrossRef] [PubMed] [Google Scholar]
- A. Vultur, C.S. Gibhardt, H. Stanisz, I. Bogeski, The role of the mitochondrial calcium uniporter (MCU) complex in cancer, Pflügers Archiv-European Journal of Physiology 470 (2018) 1149-1163. [CrossRef] [PubMed] [Google Scholar]
- S. Baliou, M. Adamaki, P. Ioannou, A. Pappa, M.I. Panayiotidis, D.A. Spandidos, I. Christodoulou, A.M. Kyriakopoulos, V. Zoumpourlis, Protective role of taurine against oxidative stress, Molecular medicine reports 24(2) (2021) 1-19. [CrossRef] [Google Scholar]
- J. Das, J. Ghosh, P. Manna, M. Sinha, P.C. Sil, Taurine protects rat testes against NaAsO2-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways, Toxicology letters 187(3) (2009) 201-210. [CrossRef] [PubMed] [Google Scholar]
- R.E. Gordon, R.F. Heller, R.F. Heller, Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment, Taurine: nutritional value and mechanisms of action (1992) 319-328. [Google Scholar]
- C.J. Jong, P. Sandal, S.W. Schaffer, The role of taurine in mitochondria health: more than just an antioxidant, Molecules 26(16) (2021) 4913. [CrossRef] [PubMed] [Google Scholar]
- O. Aruoma, B. Halliwell, B.M. Hoey, J. Butler, The antioxidant action of taurine, hypotaurine and their metabolic precursors, Biochemical Journal 256(1) (1988) 251-255. [Google Scholar]
- I. Thomas, K. Gaminda, C. Jayasinghe, D. Abeysinghe, R. Senthilnithy, DNAzymes, novel therapeutic agents in cancer therapy: a review of concepts to applications, Journal of Nucleic Acids 2021 (2021). [Google Scholar]
- M. Sioud, M. Leirdal, Design of nuclease resistant protein kinase Cα DNA enzymes with potential therapeutic application, Journal of molecular biology 296(3) (2000) 937-947. [CrossRef] [PubMed] [Google Scholar]
- K. Matsumoto, Y. Akao, H. Yi, K. Ohguchi, T. Ito, T. Tanaka, E. Kobayashi, M. Iinuma, Y. Nozawa, Preferential target is mitochondria in α-mangostin-induced apoptosis in human leukemia HL60 cells, Bioorganic & medicinal chemistry 12(22) (2004) 5799-5806. [CrossRef] [PubMed] [Google Scholar]
- X. Wu, S. Cao, S. Goh, A. Hsu, B.K. Tan, Mitochondrial destabilisation and caspase-3 activation are involved in the apoptosis of Jurkat cells induced by gaudichaudione A, a cytotoxic xanthone, Planta medica 68(03) (2002) 198-203. [CrossRef] [PubMed] [Google Scholar]
- M. Leirdal, M. Sioud, Ribozyme inhibition of the protein kinase Cα triggers apoptosis in glioma cells, British journal of cancer 80(10) (1999) 1558-1564. [CrossRef] [PubMed] [Google Scholar]
- N. Dean, R. McKay, L. Miraglia, R. Howard, S. Cooper, J. Giddings, P. Nicklin, L. Meister, R. Ziel, T. Geiger, Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C-α expression, Cancer Research 56(15) (1996) 3499-3507. [PubMed] [Google Scholar]
- N.M. Dean, R. McKay, Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides, Proceedings of the National Academy of Sciences 91(24) (1994) 11762-11766. [CrossRef] [PubMed] [Google Scholar]
- S.P. Henry, D. Monteith, A.A. Levin, Antisense oligonucleotide inhibitors for the treatment of cancer: 2. Toxicological properties of phosphorothioate oligodeoxynucleotides, Anti-cancer drug design 12(5) (1997) 395-408. [PubMed] [Google Scholar]
- Jilte, R.D., Kumar, R. and Ahmadi, M.H., 2019. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. Journal of Cleaner Production, 240, p.118131. [CrossRef] [Google Scholar]
- Singh, A.P., Pradhan, N.R., Luhach, A.K., Agnihotri, S., Jhanjhi, N.Z., Verma, S., Ghosh, U. and Roy, D.S., 2020. A novel patient-centric architectural framework for blockchain-enabled healthcare applications. IEEE Transactions on Industrial Informatics, 17(8), pp.5779-5789. [Google Scholar]
- Panda, S.K., Aggarwal, I., Kumar, H., Prasad, L., Kumar, A., Sharma, A., Vo, D.V.N., Van Thuan, D. and Mishra, V., 2021. Magnetite nanoparticles as sorbents for dye removal: a review. Environmental Chemistry Letters, 19, pp.2487-2525. [CrossRef] [Google Scholar]
- Bashir, S., Thakur, A., Lgaz, H., Chung, I.M. and Kumar, A., 2020. Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: Insights from experimental and quantum chemical studies. Surfaces and Interfaces, 20, p.100542. [CrossRef] [Google Scholar]
- Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D.S., Verma, R., Bhardwaj, P., Sharma, S. and Kumar, D., 2020. Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules, 25(12), p.2812. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.