Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01017
Number of page(s) 6
Published online 12 January 2024
  • Giasson BIGalvin JELee, and VM-YTrojanowski JQ.“The cellular and molecular pathology of Parkinson’s disease.” In: Clark CM, Trojanowski JQ, eds. Neurodegenerative Dementias: Clinical Features and Pathological Mechanisms. New York, NY, McGraw-Hill Co, 2000, 219-228. [Google Scholar]
  • Clayton DFGeorge JM.“Synucleins in synaptic plasticity and neurodegenerative disorders.” Journal of Neuroscience Research 58 (1999): 120-129. [CrossRef] [PubMed] [Google Scholar]
  • [Google Scholar]
  •,body%20pathology%20spreads%20to%20neocortical%20and%20cortical%20regions [Google Scholar]
  • Johnson KA, Conn PJ, and Niswender CM. “Glutamate receptors as therapeutic targets for Parkinson’s disease.” CNS Neurological Disorder Drug Targets 8(2009) :475–491. [CrossRef] [Google Scholar]
  • Freudenberg F, Celikel T, and Reif A. “The role of α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity.” Neuroscience Biobehavarial Review 52(2015):193–206. [CrossRef] [Google Scholar]
  • Stefanis L. “α-Synuclein in Parkinson’s disease.” Cold Spring Harbal Perspective Medicine 2(2012) :a009399. [Google Scholar]
  • Konno T, Ross OA, Puschmann A, Dickson DW, and Wszolek ZK. “Autosomal dominant Parkinson’s disease caused by SNCA duplications.” Parkinsonism Relative Disorder 22(2016) :S1–S6. [Google Scholar]
  • Xu L, and Pu J. “Alpha-synuclein in Parkinson’s disease: from pathogenetic dysfunction to potential clinical application.” Parkinsonsism Disease 2016 (2016):1720621. [Google Scholar]
  • Lashuel HA, Overk CR, Oueslati A, and Masliah E. “The many faces of α-synuclein: from structure and toxicity to therapeutic target.” Nat ReviewNeuroscience 14 (2013) :38–48. [CrossRef] [PubMed] [Google Scholar]
  • Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J, Xiong N, and Wang T. “New perspectives on roles of alpha-synuclein in Parkinson’s disease.” Frontier Aging Neuroscience 10 (2018):370. [CrossRef] [Google Scholar]
  • Dennissen FJ, Kholod N, and van Leeuwen FW. “The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim.” Progressive Neurobiology 96 (2012):190–207. [CrossRef] [Google Scholar]
  • Ciechanover A, and Kwon YT. “Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.” Experimeta Molecular Medicine 47 (2015):e147. [CrossRef] [Google Scholar]
  • Allen Reish HE, and Standaert DG. “Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease.” Journal of Parkinsonsism Disease 5(2015) :1–19. [Google Scholar]
  • Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sacayon P, Zago W, Seubert P, Barbour R, Schenk D, and Masliah E. “Reducing C- terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models.” Journal of Neuroscience 34 (2014) :9441–9454. [CrossRef] [PubMed] [Google Scholar]
  • Axelsen TM, and Woldbye DPD. “Gene therapy for Parkinson’s disease, an update.” Journal of Parkinsons Disease 8 (2018) :195–215. [CrossRef] [Google Scholar]
  • Huttunen HJ, and Saarma M. “CDNF protein therapy in Parkinson’s disease.” Cell Transplantion 28 (2019):349–366. [CrossRef] [PubMed] [Google Scholar]
  • Choong CJ, and Mochizuki H. “Gene therapy targeting mitochondrial pathway in Parkinson’s disease.” Journal of Neural Transmission 124 (2017):193–207. [CrossRef] [PubMed] [Google Scholar]
  • Titze-de-Almeida R, and Titze-de-Almeida SS. “miR-7 replacement therapy in Parkinson’s disease.” Current Gene Therapy 18 (2018) :143–153. [CrossRef] [PubMed] [Google Scholar]
  • Luo J, Padhi P, Jin H, Anantharam V, Zenitsky G, Wang Q, Willette AA, Kanthasamy A, and Kanthasamy AG. “Utilization of the CRISPR-Cas9 gene editing system to dissect neuroinflammatory and neuropharmacological mechanisms in Parkinson’s disease.” Journal of Neuroimmune Pharmacology 14 (2019) :595–607. [CrossRef] [PubMed] [Google Scholar]
  • Maiti P, Manna J, and Dunbar GL. “Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments.” Translational Neurodegeneration 6 (2017):28. [CrossRef] [PubMed] [Google Scholar]
  • Caobi A, Dutta RK, Garbinski LD, Esteban-Lopez M, Ceyhan Y, Andre M, Manevski M, Ojha CR, Lapierre J, Tiwari S, Parira T, and El-Hage N. “The Impact of CRISPR-Cas9 on age- related disorders: from pathology to therapy.” Aging Disease. 11(2020) :895–915. [CrossRef] [Google Scholar]
  • Überbacher C, Obergasteiger J, Volta M, Venezia S, Müller S, Pesce I, Pizzi S, Lamonaca G, Picard A, Cattelan G, Malpeli G, Zoli M, Beccano-Kelly D, Flynn R, Wade-Martins R, Pramstaller PP, Hicks AA, and Cowley SA, Corti C. “Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock- in reporter lines to visualize dopaminergic neurons.” Stem Cell Research. 41 (2019) :101656. [CrossRef] [PubMed] [Google Scholar]
  • Wei X, Cai M and Jin L. “The Function of the Metals in Regulating Epigenetics During Parkinson’s Disease.” Frontier Genetics 11 (2021) :616083. [CrossRef] [Google Scholar]
  • Monnet-Tschudi, F, Zurich, MG, Boschat, C, Corbaz, A, and Honegger, P. “Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases.” Review of Environmental Health 21 (2006): 105–118. [CrossRef] [PubMed] [Google Scholar]
  • Altschuler, E. “Aluminum-containing antacids as a cause of idiopathic Parkinson’s disease.” Medical Hypotheses 53 (1999): 22–23. [CrossRef] [PubMed] [Google Scholar]
  • 27Khamparia, A., Saini, G., Gupta, D., Khanna, A., Tiwari, S. and de Albuquerque, V.H.C., 2020. Seasonal crops disease prediction and classification using deep convolutional encoder network. Circuits, Systems, and Signal Processing, 39, pp.818-836. [CrossRef] [Google Scholar]
  • 28Bahadure, N.B., Ray, A.K. and Thethi, H.P., 2018. Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. Journal of digital imaging, 31, pp.477-489. [CrossRef] [PubMed] [Google Scholar]
  • 29 Kumar, V., Singh, S., Singh, J. and Upadhyay, N., 2015. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bulletin of environmental contamination and toxicology, 94, pp.807-814. [CrossRef] [PubMed] [Google Scholar]
  • 30 Prabhakar, P.K., Kumar, A. and Doble, M., 2014. Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine, 21(2), pp.123-130. [CrossRef] [PubMed] [Google Scholar]
  • 31Khamparia, A., Gupta, D., de Albuquerque, V.H.C., Sangaiah, A.K. and Jhaveri, R.H., 2020. Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. The Journal of Supercomputing, 76, pp.8590-8608. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.