Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/bioconf/20248601021 | |
Published online | 12 January 2024 |
- S.A.T. Opatha, V. Titapiwatanakun, and R. Chutoprapat, “Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery,” Pharmaceutics 12(9), 1–23 (2020). [Google Scholar]
- N. Dudhipala, R. Phasha Mohammed, A. Adel Ali Youssef, and N. Banala, “Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation,” Drug Dev Ind Pharm, 1334–1344 (2020). [Google Scholar]
- S. Babaie, A.R. del Bakhshayesh, J.W. Ha, H. Hamishehkar, and K.H. Kim, “Invasome: A novel nanocarrier for transdermal drug delivery,” Nanomaterials 10(2), (2020). [Google Scholar]
- B. Chaulagain, A. Jain, A. Tiwari, A. Verma, and S.K. Jain, “Passive delivery of protein drugs through transdermal route,” Artif Cells Nanomed Biotechnol 46(sup1), 472–487 (2018). [CrossRef] [Google Scholar]
- A.Z. Alkilani, J. Nasereddin, R. Hamed, S. Nimrawi, G. Hussein, H. Abo-Zour, and R.F. Donnelly, “Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems,” Pharmaceutics 14(6), (2022). [Google Scholar]
- Z. Yu, X. Meng, S. Zhang, Y. Chen, Z. Zhang, and Y. Zhang, “Recent progress in transdermal nanocarriers and their surface modifications,” Molecules 26(11), (2021). [Google Scholar]
- B.A. Witika, L.L. Mweetwa, K.O. Tshiamo, K. Edler, S.K. Matafwali, P. V. Ntemi, M.T.R. Chikukwa, and P.A. Makoni, “Vesicular drug delivery for the treatment of topical disorders: current and future perspectives,” J Pharm Pharmacol 73(11), 1427–1441 (2021). [CrossRef] [PubMed] [Google Scholar]
- M. Yuan, J. Niu, Q. Xiao, H. Ya, Y. Zhang, Y. Fan, L. Li, and X. Li, “Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin,” Drug Deliv 29(1), 1232–1242 (2022). [CrossRef] [PubMed] [Google Scholar]
- M. Pradhan, S. Srivastava, D. Singh, S. Saraf, S. Saraf, & Manju, and R. Singh, Perspectives of Lipid-Based Drug Carrier Systems for Transdermal Delivery (2018). [Google Scholar]
- C. Zylberberg, and S. Matosevic, “Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape,” Drug Deliv 23(9), 3319–3329 (2016). [CrossRef] [PubMed] [Google Scholar]
- A. Raj, S.C. C, A.N. V, A. Ivon, N.F.N. M, and N.N.P. P, “Lipid-Based Vesicles: a Non-invasive Tool for Transdermal Drug Delivery,” J Pharm Innov, (2021). [Google Scholar]
- K. Sudhakar, S. Fuloria, V. Subramaniyan, K. v. Sathasivam, A.K. Azad, S.S. Swain, M. Sekar, S. Karupiah, O. Porwal, A. Sahoo, D.U. Meenakshi, V.K. Sharma, S. Jain, R.N. Charyulu, and N.K. Fuloria, “Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system,” Nanomaterials 11(10), (2021). [Google Scholar]
- A.T. Jamadar, M.R. Peram, N. Chandrasekhar, A. Kanshide, V.M. Kumbar, and P. v. Diwan, “Formulation, Optimization, and Evaluation of Ultradeformable Nanovesicles for Effective Topical Delivery of Hydroquinone,” J Pharm Innov, (2022). [Google Scholar]
- M. Qindeel, M.H. Ullah, Fakhar-ud-Din, N. Ahmed, and A. ur Rehman, “Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy,” Journal of Controlled Release 327, 595–615 (2020). [CrossRef] [PubMed] [Google Scholar]
- T. Subongkot, B. Pamornpathomkul, T. Rojanarata, P. Opanasopit, and T. Ngawhirunpat, “Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes,” Int J Nanomedicine 9(1), 3539–3550 (2014). [PubMed] [Google Scholar]
- F. Lai, C. Caddeo, M.L. Manca, M. Manconi, C. Sinico, and A.M. Fadda, “What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery,” Int J Pharm 583, (2020). [Google Scholar]
- A. Williams, E.L. Romero, and M.J. Morilla, Carrier Deformability in Drug Delivery Maria Jose Morilla Related Papers Vesicular Syst Ems for Delivering Convent Ional Small Organic Molecules and Larger Macromole… Carrier Deformability in Drug Delivery (2016). [Google Scholar]
- C. Vitorino, J. Sousa, and A. Pais, “Overcoming the Skin Permeation Barrier: Challenges and Opportunities,” Curr Pharm Des 21(20), 2698–2712 (2015). [CrossRef] [PubMed] [Google Scholar]
- E.B. Souto, A.S. Macedo, J. Dias-Ferreira, A. Cano, A. Zielińska, and C.M. Matos, “Elastic and ultradeformable liposomes for transdermal delivery of active pharmaceutical ingredients (Apis),” Int J Mol Sci 22(18), (2021). [Google Scholar]
- M. Elmowafy, “Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation,” Colloids Surf B Biointerfaces 203, (2021). [Google Scholar]
- D. Patel, B. Patel, and H. Thakkar, “Lipid Based Nanocarriers: Promising Drug Delivery System for Topical Application,” European Journal of Lipid Science and Technology 123(5), (2021). [CrossRef] [Google Scholar]
- H.A.E. Benson, J.E. Grice, Y. Mohammed, S. Namjoshi, and M.S. Roberts, “Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies,” Curr Drug Deliv 16(5), 444–460 (2019). [CrossRef] [PubMed] [Google Scholar]
- V. Krishnan, and S. Mitragotri, “Nanoparticles for topical drug delivery: Potential for skin cancer treatment,” Adv Drug Deliv Rev 153, 87–108 (2020). [CrossRef] [PubMed] [Google Scholar]
- S.R. Stefanov, and V.Y. Andonova, “Lipid nanoparticulate drug delivery systems: Recent advances in the treatment of skin disorders,” Pharmaceuticals 14(11), (2021). [Google Scholar]
- X. Zhou, Y. Hao, L. Yuan, S. Pradhan, K. Shrestha, O. Pradhan, H. Liu, and W. Li, “Nano-formulations for transdermal drug delivery: A review,” Chinese Chemical Letters 29(12), 1713–1724 (2018). [CrossRef] [Google Scholar]
- I.A. Chacko, V.M. Ghate, L. Dsouza, and S.A. Lewis, “Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications,” Colloids Surf B Biointerfaces 195, (2020). [Google Scholar]
- L.M. Thomas, and A.H. Khasraghi, “Nanotechnology-based topical drug delivery systems for management of dandruff and seborrheic dermatitis: An overview,” Iraqi Journal of Pharmaceutical Sciences 29(1), 12–32 (2020). [Google Scholar]
- S. Khogta, J. Patel, K. Barve, and V. Londhe, “Herbal nano-formulations for topical delivery,” J Herb Med 20, (2020). [Google Scholar]
- A. Madni, M. Sarfraz, M. Rehman, M. Ahmad, N. Akhtar, S. Ahmad, N. Tahir, S. Ijaz, R. Al-Kassas, and R. Löbenberg, Liposomal Drug Delivery: A Versatile Platform for Challenging Clinical Applications (2014). [Google Scholar]
- N. Akhtar, Send Orders for Reprints to Reprints@benthamscience.Net Vesicles: A Recently Developed Novel Carrier for Enhanced Topical Drug Delivery (2014). [Google Scholar]
- G. Gaynanova, L. Vasileva, R. Kashapov, D. Kuznetsova, R. Kushnazarova, A. Tyryshkina, E. Vasilieva, K. Petrov, L. Zakharova, and O. Sinyashin, “Self-assembling drug formulations with tunable permeability and biodegradability,” Molecules 26(22), (2021). [Google Scholar]
- S.L. Jyothi, K.L. Krishna, V.K. Ameena Shirin, R. Sankar, K. Pramod, and H. V. Gangadharappa, “Drug delivery systems for the treatment of psoriasis: Current status and prospects,” J Drug Deliv Sci Technol 62, (2021). [Google Scholar]
- M. Bragagni, N. Mennini, F. Maestrelli, M. Cirri, and P. Mura, “Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib,” Drug Deliv 19(7), 354–361 (2012). [CrossRef] [PubMed] [Google Scholar]
- S.M. Jadhav, P. Morey, M.M. Karpe, and V. Kadam, “NOVEL VESICULAR SYSTEM: AN OVERVIEW,” J Appl Pharm Sci 2012(01), 193–202 (n.d.). [Google Scholar]
- B. Ewert de Oliveira, O.H. Junqueira Amorim, L.L. Lima, R.A. Rezende, N.C. Mestnik, E. Bagatin, and G.R. Leonardi, “5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use,” J Drug Deliv Sci Technol 61, (2021). [Google Scholar]
- L. Azzahra, S.R. Mita, and S. Sriwidodo, “Formulation, Characterization, and Herbal Drug Delivery Applications of Ethosome, Transfersome, and Transethosome,” Indonesian Journal of Pharmaceutics 2(3), (2020). [CrossRef] [Google Scholar]
- M. Nagpal, and M. Kaur, “Nanomaterials for skin antifungal therapy: An updated review,” J Appl Pharm Sci 11(Supplement 1), 15–25 (2021). [Google Scholar]
- R. Garg, S. Kaur, Ritika, S. Khatoon, Naina, and H. Verma, “A complete and updated review on various types of drug delivery systems,” International Journal of Applied Pharmaceutics 12(4), 1–16 (2020). [CrossRef] [Google Scholar]
- M. Gupta, U. Agrawal, and S.P. Vyas, “Nanocarrier-based topical drug delivery for the treatment of skin diseases,” Expert Opin Drug Deliv 9(7), 783–804 (2012). [CrossRef] [PubMed] [Google Scholar]
- R. Bangia, G. Sharma, S. Dogra, and O.P. Katare, “Nanotechnological interventions in dermatophytosis: from oral to topical, a fresh perspective,” Expert Opin Drug Deliv 16(4), 377–396 (2019). [CrossRef] [PubMed] [Google Scholar]
- S. Chauhan, N. Gulati, and U. Nagaich, “Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery,” International Journal of Polymeric Materials and Polymeric Biomaterials 68(5), 266–277 (2019). [CrossRef] [Google Scholar]
- I. Khan, R. Needham, S. Yousaf, C. Houacine, Y. Islam, R. Bnyan, S.K. Sadozai, M.A. Elrayess, and A. Elhissi, “Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery,” J Drug Deliv Sci Technol 66, (2021). [Google Scholar]
- M. Pradhan, D. Singh, and M.R. Singh, “Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches,” Journal of Controlled Release 170(3), 380–395 (2013). [CrossRef] [PubMed] [Google Scholar]
- C. Yang, X. Dai, S. Yang, L. Ma, L. Chen, R. Gao, X. Wu, and X. Shi, “Coarse-grained molecular dynamics simulations of the effect of edge activators on the skin permeation behavior of transfersomes,” Colloids Surf B Biointerfaces 183, (2019). [Google Scholar]
- R. Pahwa, S. Pal, K. Saroha, P. Waliyan, and M. Kumar, “Transferosomes: Unique vesicular carriers for effective transdermal delivery,” J Appl Pharm Sci 11(5), 1–8 (2021). [Google Scholar]
- D.K. Mishra, R. Shandilya, and P.K. Mishra, “Lipid based nanocarriers: a translational perspective,” Nanomedicine 14(7), 2023–2050 (2018). [CrossRef] [PubMed] [Google Scholar]
- P. Vikas, S. Ajay, G. Dilip, S. Rajesh, and R. Khalsa, Ultra-Resilient Nanovesicular Systems: As a Novel Tool in Successful Transdermal Drug Delivery (2012). [Google Scholar]
- V. Garg, H. Singh, S. Bimbrawh, S.K. Singh, M. Gulati, Y. Vaidya, and P. Kaur, “Ethosomes and Transfersomes: Principles, Perspectives and Practices,” Curr Drug Deliv 14(5), (2016). [Google Scholar]
- R. Pandey, M. Bhairam, S.S. Shukla, and B. Gidwani, “Colloidal and vesicular delivery system for herbal bioactive constituents,” DARU, Journal of Pharmaceutical Sciences 29(2), 415–438 (2021). [CrossRef] [Google Scholar]
- R.S. Kumar, and M. Pradhan, “Transferosomes: Vesicular Carrier for both Hydrophilic and Lipophilic Drugs,” J Pharm Res Int, 106–120 (2022). [Google Scholar]
- J. Rajkumar, R.K. Sree Lakshmi, S. Vineesha, and J. Rajkumar, “A New Approach to Transdermal Drug Delivery Using Transfersomes-Based Nanoencapsulation: A Research Update,” Asian Journal of Pharmaceutical Research and Development 10(1), 64–70 (2022). [CrossRef] [Google Scholar]
- M. Bhavika Bhokare, Transfersomes: A Novel Drug Delivery System (2017). [Google Scholar]
- G.P. Kumar, and P.R. Rao, Ultra Deformable Niosomes for Improved Transdermal Drug Delivery: The Future Scenario (n.d.). [Google Scholar]
- L. Kirana Pallathadka, and H. Pallathadka, JOURNAL OF CRITICAL REVIEWS NOVEL CARRIER FOR TRANSDERMAL PATCHES USED IN TRANSFEROSOMES: A REVIEW (n.d.). [Google Scholar]
- M.J.S. Pawar, A.B. Roge, and S.M. Vadvalkar, “Novel Approach in Transdermal Drug Delivery System: Transferosome,” Research J. Pharm. and Tech 6(1), (2013). [Google Scholar]
- A. Kumar, K. Pathak, and V. Bali, “Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents,” Drug Discov Today 17(21–22), 1233–1241 (2012). [CrossRef] [PubMed] [Google Scholar]
- P. Chaurasiya, E. Ganju, N. Upmanyu, S.K. Ray, and P. Jain, “Transfersomes: a novel technique for transdermal drug delivery,” Journal of Drug Delivery and Therapeutics 9(1), 279–285 (2019). [CrossRef] [Google Scholar]
- M.W. Akram, H. Jamshaid, F.U. Rehman, M. Zaeem, J. zeb Khan, and A. Zeb, “Transfersomes: a Revolutionary Nanosystem for Efficient Transdermal Drug Delivery,” AAPS PharmSciTech 23(1), (2022). [Google Scholar]
- Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Srivastava, S., Sharma, N.R., Singh, J., Kanwar, R. and Kumar, A., 2020. A comprehensive review on hydrothermal carbonization of biomass and its applications. Chemistry Africa, 3, pp.1-19. [CrossRef] [Google Scholar]
- Khursheed, R., Singh, S.K., Wadhwa, S., Kapoor, B., Gulati, M., Kumar, R., Ramanunny, A.K., Awasthi, A. and Dua, K., 2019. Treatment strategies against diabetes: Success so far and challenges ahead. European journal of pharmacology, 862, p.172625. [CrossRef] [PubMed] [Google Scholar]
- Jena, M.K., Nayak, N., Chen, K. and Nayak, N.R., 2019. Role of macrophages in pregnancy and related complications. Archivumimmunologiae et therapiaeexperimentalis, 67, pp.295-309. [Google Scholar]
- Singh, P., Nayyar, A., Kaur, A. and Ghosh, U., 2020. Blockchain and fog based architecture for internet of everything in smart cities. Future Internet, 12(4), p.61. [CrossRef] [Google Scholar]
- Manzoor, S.I. and Singla, J., 2019, April. Fake news detection using machine learning approaches: A systematic review. In 2019 3rd international conference on trends in electronics and informatics (ICOEI) (pp. 230-234). IEEE. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.