Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01020
Number of page(s) 18
Published online 12 January 2024
  • Criscuolo, E., et al., Alternative methods of vaccine delivery: an overview of edible and intradermal vaccines. Journal of immunology research, 2019. 2019. [CrossRef] [Google Scholar]
  • Dugan, H.L., C. Henry, and P.C. Wilson, Aging and influenza vaccine-induced immunity. Cellular immunology, 2020. 348: p. 103998. [CrossRef] [PubMed] [Google Scholar]
  • Idris, N., et al., Nanotechnology Based Virosomal Drug Delivery Systems. Journal of Nanotechnology and Materials Science, 2014. 1(1): p. 27-35. [Google Scholar]
  • Huckriede, A., et al., The virosome concept for influenza vaccines. Vaccine, 2005. 23: p. S26-S38. [CrossRef] [PubMed] [Google Scholar]
  • Donaldson, B., et al., Virus-like particle vaccines: immunology and formulation for clinical translation. Expert review of vaccines, 2018. 17(9): p. 833-849. [CrossRef] [PubMed] [Google Scholar]
  • Asadi, K. and A. Gholami, Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. International journal of biological macromolecules, 2021. 182: p. 648-658. [CrossRef] [PubMed] [Google Scholar]
  • Kalra, N., et al., Virosomes: as a drug delivery carrier. American Journal of Advanced Drug Delivery, 2013. 1(1): p. 29-35. [Google Scholar]
  • Singh, N., et al., Virosomes as novel drug delivery system: an overview. PharmaTutor, 2017. 5(9): p. 47-55. [CrossRef] [Google Scholar]
  • Soema, P.C., et al., Current and next generation influenza vaccines: Formulation and production strategies. European Journal of Pharmaceutics and Biopharmaceutics, 2015. 94: p. 251-263. [CrossRef] [PubMed] [Google Scholar]
  • Apolinario, A.C., et al., Lipid nanovesicles for biomedical applications:‘What is in a name’? Progress in lipid research, 2021. 82: p. 101096. [CrossRef] [PubMed] [Google Scholar]
  • Liu, P., G. Chen, and J. Zhang, A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules, 2022. 27(4): p. 1372. [CrossRef] [PubMed] [Google Scholar]
  • Kapoor, B., et al., The Why, Where, Who, How, and What of the vesicular delivery systems. Advances in colloid and interface science, 2019. 271: p. 101985. [CrossRef] [PubMed] [Google Scholar]
  • Pattnaik, S., et al., Lipid vesicles: Potentials as drug delivery systems, in Nanoengineered Biomaterials for Advanced Drug Delivery. 2020, Elsevier. p. 163-180. [CrossRef] [Google Scholar]
  • Guimarães, D., A. Cavaco-Paulo, and E. Nogueira, Design of liposomes as drug delivery system for therapeutic applications. International journal of pharmaceutics, 2021. 601: p. 120571. [CrossRef] [PubMed] [Google Scholar]
  • Bhardwaj, P., et al., Niosomes: A review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology, 2020. 56: p. 101581. [CrossRef] [Google Scholar]
  • Touitou, E., et al., Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of controlled release, 2000. 65(3): p. 403-418. [CrossRef] [PubMed] [Google Scholar]
  • Girão, L.F., et al., Asp-enzymosomes with saccharomyces cerevisiae asparaginase ii expressed in pichia pastoris: Formulation design and in vitro studies of a potential antileukemic drug. International Journal of Molecular Sciences, 2021. 22(20): p. 11120. [CrossRef] [PubMed] [Google Scholar]
  • Pahwa, R., et al., Transferosomes: Unique vesicular carriers for effective transdermal delivery. Journal of Applied Pharmaceutical Science, 2021. 11(5): p. 001-008. [Google Scholar]
  • Sarma, A. and T. Chakraborty, Phytosome: A Brief Overview. [Google Scholar]
  • Kumar, P.T., J. Mishra, and A. Podder, Design, fabrication and evaluation of rosuvastatin pharmacosome-a novel sustained release drug delivery system. Eur J Pharm Med Res, 2016. 3(4): p. 332-50. [Google Scholar]
  • Brilliani, K.N., Novel Drug Delivery System Of Hemagglutinin Vaccine. World Journal of Pharmaceutical Research, 2021. 10(10): p. 1378-1385. [Google Scholar]
  • Dong, W., et al., Monophosphoryl Lipid A‐Adjuvanted Virosomes with Ni‐Chelating Lipids for Attachment of Conserved Viral Proteins as Cross‐Protective Influenza Vaccine. Biotechnology journal, 2018. 13(4): p. 1700645. [CrossRef] [Google Scholar]
  • Glück, R., C. Moser, and I.C. Metcalfe, Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert opinion on biological therapy, 2004. 4(7): p. 1139-1145. [CrossRef] [PubMed] [Google Scholar]
  • Nakamura, N., et al., Efficient transfer of intact oligonucleotides into the nucleus of ligament scar fibroblasts by HVJ-cationic liposomes is correlated with effective antisense gene inhibition. The journal of biochemistry, 2001. 129(5): p. 755-759. [CrossRef] [PubMed] [Google Scholar]
  • López-Sagaseta, J., et al., Self-assembling protein nanoparticles in the design of vaccines. Computational and structural biotechnology journal, 2016. 14: p. 58-68. [CrossRef] [PubMed] [Google Scholar]
  • Sen, R., et al., A Review on Cubosome and Virosome: the novel drug delivery system. UJPSR, 2017. 3(1): p. 24-33. [Google Scholar]
  • Chandra, S., et al., Site‐specific phosphorylation of villin remodels the actin cytoskeleton to regulate Sendai viral glycoprotein‐mediated membrane fusion. FEBS letters, 2019. 593(15): p. 1927-1943. [CrossRef] [PubMed] [Google Scholar]
  • Moser, C., et al., Influenza virosomes as vaccine adjuvant and carrier system. Expert review of vaccines, 2013. 12(7): p. 779-791. [CrossRef] [PubMed] [Google Scholar]
  • Liu, H., et al., Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment. Acta pharmaceutica, 2015. 65(2): p. 105-116. [CrossRef] [Google Scholar]
  • Tamborrini, M., et al., Vaccination with virosomally formulated recombinant CyRPA elicits protective antibodies against Plasmodium falciparum parasites in preclinical in vitro and in vivo models. NPJ vaccines, 2020. 5(1): p. 9. [CrossRef] [PubMed] [Google Scholar]
  • Gasparini, R. and P.L. Lai, Utility of virosomal adjuvated influenza vaccines: a review of the literature. Journal of preventive medicine and hygiene, 2010. 51(1). [Google Scholar]
  • Cusi, M.G., Applications of influenza virosomes as a delivery system. Human vaccines, 2006. 2(1): p. 1-7. [CrossRef] [PubMed] [Google Scholar]
  • Laupèze, B., et al., Adjuvant Systems for vaccines: 13 years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine, 2019. 37(38): p. 5670-5680. [CrossRef] [PubMed] [Google Scholar]
  • Huckriede, A., et al., Influenza virosomes: combining optimal presentation of hemagglutinin with immunopotentiating activity. Vaccine, 2003. 21(9-10): p. 925-931. [CrossRef] [PubMed] [Google Scholar]
  • Wilschut, J., Influenza vaccines: the virosome concept. Immunology letters, 2009. 122(2): p. 118-121. [CrossRef] [PubMed] [Google Scholar]
  • Zhao, L., et al., O/W nanoemulsion as an adjuvant for an inactivated H3N2 influenza vaccine: based on particle properties and mode of carrying. International Journal of Nanomedicine, 2020: p. 2071-2083. [Google Scholar]
  • Glück, R., et al., Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A. The Journal of clinical investigation, 1992. 90(6): p. 2491-2495. [CrossRef] [PubMed] [Google Scholar]
  • Zurbriggen, R., et al., IRIV-adjuvanted hepatitis A vaccine: in vivo absorption and biophysical characterization. Progress in Lipid Research, 2000. 39(1): p. 3-18. [CrossRef] [PubMed] [Google Scholar]
  • Tamm, L.K., Special issue on liposomes, exosomes, and virosomes. Biophysical Journal, 2017. 113(6): p. E1. [CrossRef] [PubMed] [Google Scholar]
  • Hatz, C., et al., Successful memory response following a booster dose with a virosome-formulated hepatitis a vaccine delayed up to 11 years. Clinical and Vaccine Immunology, 2011. 18(5): p. 885-887. [CrossRef] [PubMed] [Google Scholar]
  • Bovier, P.A., Epaxal®: A virosomal vaccine to prevent hepatitis A infection. Expert review of vaccines, 2008. 7(8): p. 1141-1150. [CrossRef] [PubMed] [Google Scholar]
  • Thomas, C., et al., Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Molecular pharmaceutics, 2011. 8(2): p. 405-415. [CrossRef] [PubMed] [Google Scholar]
  • Brouwer, P.J. and R.W. Sanders, Presentation of HIV-1 envelope glycoprotein trimers on diverse nanoparticle platforms. Current Opinion in HIV and AIDS, 2019. 14(4): p. 302. [CrossRef] [PubMed] [Google Scholar]
  • Gao, Y., P.F. McKay, and J.F. Mann, Advances in HIV-1 vaccine development. Viruses, 2018. 10(4): p. 167. [CrossRef] [PubMed] [Google Scholar]
  • Duchemin, M., et al., Antibody-dependent cellular phagocytosis of HIV-1-infected cells is efficiently triggered by IgA targeting HIV-1 envelope subunit gp41. Frontiers in Immunology, 2020. 11: p. 1141. [CrossRef] [PubMed] [Google Scholar]
  • Burgener, A., et al., A systems biology examination of the human female genital tract shows compartmentalization of immune factor expression. Journal of virology, 2013. 87(9): p. 5141-5150. [CrossRef] [PubMed] [Google Scholar]
  • Amacker, M., et al., New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. npj Vaccines, 2020. 5(1): p. 41. [CrossRef] [PubMed] [Google Scholar]
  • Chan, C.K., et al., Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination—review of current perspectives. Journal of oncology, 2019. 2019. [CrossRef] [Google Scholar]
  • Kayser, V. and I. Ramzan, Vaccines and vaccination: History and emerging issues. Human vaccines & immunotherapeutics, 2021. 17(12): p. 5255-5268. [Google Scholar]
  • Saga, K. and Y. Kaneda, Virosome presents multimodel cancer therapy without viral replication. BioMed Research International, 2013. 2013. [Google Scholar]
  • Krishnamachari, Y., et al., Nanoparticle delivery systems in cancer vaccines. Pharmaceutical research, 2011. 28: p. 215-236. [CrossRef] [PubMed] [Google Scholar]
  • Hashemi, S.A., et al., Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS- CoV-2 in biological/non-biological media. Biosensors and Bioelectronics, 2021. 171: p. 112731. [CrossRef] [Google Scholar]
  • Mousavi, S.M., et al., Recent biotechnological approaches for treatment of novel COVID-19: from bench to clinical trial. Drug Metabolism Reviews, 2021. 53(1): p. 141-170. [CrossRef] [PubMed] [Google Scholar]
  • Kuate, S., et al., Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology, 2007. 362(1): p. 26-37. [CrossRef] [Google Scholar]
  • Bungener, L.B., Therapeutic immunization strategies against cervical cancer: induction of cell-mediated immunity in murine models. 2004. [Google Scholar]
  • Coleman, C.M., et al., Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014. 32(26): p. 3169-3174. [CrossRef] [PubMed] [Google Scholar]
  • Angel, J., et al., Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine, 2007. 25(19): p. 3913-3921. [CrossRef] [PubMed] [Google Scholar]
  • Fernández, L., et al., Protective efficacy in a Hamster model of a multivalent vaccine for human visceral Leishmaniasis (MuLeVaClin) consisting of the KMP11, LEISH-F3+, and LJL143 antigens in virosomes, plus GLA-SE adjuvant. Microorganisms, 2021. 9(11): p. 2253. [CrossRef] [PubMed] [Google Scholar]
  • Kaneda, Y., Virosome: a novel vector to enable multi-modal strategies for cancer therapy. Advanced drug delivery reviews, 2012. 64(8): p. 730-738. [CrossRef] [PubMed] [Google Scholar]
  • Kumar, V., et al., Preparation and characterization of nanocurcumin based hybrid virosomes as a drug delivery vehicle with enhanced anticancerous activity and reduced toxicity. Scientific reports, 2021. 11(1): p. 368. [CrossRef] [PubMed] [Google Scholar]
  • Khalaj‐Hedayati, A., et al., Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza and other respiratory viruses, 2020. 14(1): p. 92-101. [CrossRef] [PubMed] [Google Scholar]
  • Rappuoli, R. and E.D. Gregorio, Novel immunologic adjuvants. 2011, Future Medicine. [Google Scholar]
  • Li, Y., Strategies for enhancing enzyme delivery using the heparin/protamine-based drug delivery system. 2003: University of Michigan. [Google Scholar]
  • Homhuan, A., et al., Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity. European Journal of Pharmaceutical Sciences, 2004. 22(5): p. 459-468. [CrossRef] [PubMed] [Google Scholar]
  • de Jonge, J., et al., Use of a dialyzable short-chain phospholipid for efficient solubilization and reconstitution of influenza virus envelopes. Biochimica et biophysica acta (bba)-biomembranes, 2006. 1758(4): p. 527-536. [CrossRef] [Google Scholar]
  • Malonis, R.J., J.R. Lai, and O. Vergnolle, Peptide-based vaccines: current progress and future challenges. Chemical reviews, 2019. 120(6): p. 3210-3229. [Google Scholar]
  • Kumar, V., et al., Comparison of Virosome vs. Liposome as drug delivery vehicle using HepG2 and CaCo2 cell lines. Journal of Microencapsulation, 2021. 38(5): p. 263-275. [CrossRef] [PubMed] [Google Scholar]
  • Mohammadzadeh, Y., et al., Introduction of cationic virosome derived from vesicular stomatitis virus as a novel gene delivery system for sf9 cells. Journal of liposome research, 2017. 27(2): p. 83-89. [CrossRef] [PubMed] [Google Scholar]
  • Xu, X., et al., Cooperative hierarchical self‐assembly of peptide dendrimers and linear polypeptides into nanoarchitectures mimicking viral capsids. Angewandte Chemie, 2012. 124(13): p. 3184-3187. [CrossRef] [Google Scholar]
  • Otten, G., et al., A phase 1, randomized, observer blind, antigen and adjuvant dosage finding clinical trial to evaluate the safety and immunogenicity of an adjuvanted, trivalent subunit influenza vaccine in adults≥ 65 years of age. Vaccine, 2020. 38(3): p. 578-587. [CrossRef] [PubMed] [Google Scholar]
  • Chen, D.J., et al., Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proceedings of the National Academy of Sciences, 2010. 107(7): p. 3099-3104. [CrossRef] [PubMed] [Google Scholar]
  • Hurwitz, J.L., Respiratory syncytial virus vaccine development. Expert review of vaccines, 2011. 10(10): p. 1415-1433. [CrossRef] [PubMed] [Google Scholar]
  • Leroux-Roels, G., et al., Randomized phase I: safety, immunogenicity and mucosal antiviral activity in young healthy women vaccinated with HIV-1 Gp41 P1 peptide on virosomes. PloS one, 2013. 8(2): p. e55438. [Google Scholar]
  • Shi, S., et al., Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2019. 37(24): p. 3167-3178. [CrossRef] [PubMed] [Google Scholar]
  • van der Velden, Y.U., et al., A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Scientific Reports, 2022. 12(1): p. 3884. [CrossRef] [PubMed] [Google Scholar]
  • Cremona, T.P., et al., Novel nasal virosome spray vaccine to protect against COVID-19. 2022, Eur Respiratory Soc. [Google Scholar]
  • Naeem, A., et al., Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. Journal of Medical Virology, 2020. 92(12): p. 3016-3027. [CrossRef] [PubMed] [Google Scholar]
  • Hasegawa, H., Nasal Influenza Vaccines, in Mucosal Vaccines. 2020, Elsevier. p. 677-682. [Google Scholar]
  • Khaimova, R., et al., Serological response with Heplisav-B® in prior hepatitis B vaccine non-responders living with HIV. Vaccine, 2021. 39(44): p. 6529-6534. [CrossRef] [PubMed] [Google Scholar]
  • Muthamilselvan, T., M.R.I. Khan, and I. Hwang, Assembly of Human Papillomavirus 16 L1 Protein in Nicotiana benthamiana Chloroplasts into Highly Immunogenic Virus-Like Particles. Journal of Plant Biology, 2023: p. 1-10. [Google Scholar]
  • Andani, A., et al., One or two doses of hepatitis A vaccine in universal vaccination programs in children in 2020: A systematic review. Vaccine, 2022. 40(2): p. 196-205. [CrossRef] [PubMed] [Google Scholar]
  • Zandi, M., et al., State-of-the-art cerium nanoparticles as promising agents against human viral infections. Biomedicine & Pharmacotherapy, 2022. 156: p. 113868. [CrossRef] [Google Scholar]
  • Sharma, R., Jasrotia, K., Singh, N., Ghosh, P., Srivastava, S., Sharma, N.R., Singh, J., Kanwar, R. and Kumar, A., 2020. A comprehensive review on hydrothermal carbonization of biomass and its applications. Chemistry Africa, 3, pp.1-19. [CrossRef] [Google Scholar]
  • Khursheed, R., Singh, S.K., Wadhwa, S., Kapoor, B., Gulati, M., Kumar, R., Ramanunny, A.K., Awasthi, A. and Dua, K., 2019. Treatment strategies against diabetes: Success so far and challenges ahead. European journal of pharmacology, 862, p.172625. [CrossRef] [PubMed] [Google Scholar]
  • Jena, M.K., Nayak, N., Chen, K. and Nayak, N.R., 2019. Role of macrophages in pregnancy and related complications. Archivumimmunologiae et therapiaeexperimentalis, 67, pp.295-309. [Google Scholar]
  • Singh, P., Nayyar, A., Kaur, A. and Ghosh, U., 2020. Blockchain and fog based architecture for internet of everything in smart cities. Future Internet, 12(4), p.61. [CrossRef] [Google Scholar]
  • Manzoor, S.I. and Singla, J., 2019, April. Fake news detection using machine learning approaches: A systematic review. In 2019 3rd international conference on trends in electronics and informatics (ICOEI) (pp. 230-234). IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.