Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01032
Number of page(s) 16
DOI https://doi.org/10.1051/bioconf/20248601032
Published online 12 January 2024
  • O. Anderson et al., “An investigation of the antileishmanial properties of semi-synthetic saponins,” RSC Med. Chem., vol. 11, no. 7, pp. 833–842, 2020, doi: 10.1039/d0md00123f. [CrossRef] [Google Scholar]
  • K. M. Ahua, J. R. Ioset, A. Ransijn, J. Mauël, S. Mavi, and K. Hostettmann, “Antileishmanial and antifungal acridone derivatives from the roots of Thamnosma rhodesica,” Phytochemistry, vol. 65, no. 7, pp. 963–968, 2004, doi: 10.1016/j.phytochem.2003.12.020. [CrossRef] [PubMed] [Google Scholar]
  • S. Ray, B. Hazra, B. Mittra, A. Das, and H. K. Majumder, “Diospyrin, a bisnaphthoquinone: A novel inhibitor of type I DNA topoisomerase of Leishmania donovani,” Mol. Pharmacol., vol. 54, no. 6, pp. 994–999, 1998, doi: 10.1124/mol.54.6.994. [CrossRef] [PubMed] [Google Scholar]
  • F. Delmas et al., “Antileishmanial activity of three saponins isolated from ivy, α- hederin, β-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro,” Planta Med., vol. 66, no. 4, pp. 343–347, 2000, doi: 10.1055/s-2000-8541. [CrossRef] [PubMed] [Google Scholar]
  • D. Mandal, N. Panda, S. Kumar, S. Banerjee, N. B. Mandal, and N. P. Sahu, “A triterpenoid saponin possessing antileishmanial activity from the leaves of Careya arborea,” Phytochemistry, vol. 67, no. 2, pp. 183–190, 2006, doi: 10.1016/j.phytochem.2005.10.028. [CrossRef] [PubMed] [Google Scholar]
  • A. B. Valerino-Díaz et al., “An enquiry into antileishmanial activity and quantitative analysis of polyhydroxylated steroidal saponins from Solanum paniculatum L. leaves,” J. Pharm. Biomed. Anal., vol. 191, 2020, doi: 10.1016/j.jpba.2020.113635. [Google Scholar]
  • A. C. Stanley and C. R. Engwerda, “Balancing immunity and pathology in visceral leishmaniasis,” Immunol. Cell Biol., vol. 85, no. 2, pp. 138–147, 2007, doi: 10.1038/sj.icb7100011. [CrossRef] [PubMed] [Google Scholar]
  • C. B. Palatnik-De-Sousa and M. J. Day, “One Health: The global challenge of epidemic and endemic leishmaniasis,” Parasites and Vectors, vol. 4, no. 1, p. 197, 2011, doi: 10.1186/1756-3305-4-197. [CrossRef] [Google Scholar]
  • G. Baneth, A. F. Koutinas, L. Solano-Gallego, P. Bourdeau, and L. Ferrer, “Canine leishmaniosis - new concepts and insights on an expanding zoonosis: part one,” Trends Parasitol., vol. 24, no. 7, pp. 324–330, 2008, doi: 10.1016/j.pt.2008.04.001. [CrossRef] [Google Scholar]
  • S. Burza, S. L. Croft, and M. Boelaert, “Leishmaniasis,” Lancet, vol. 392, no. 10151, pp. 951–970, 2018, doi: 10.1016/S0140-6736(18)31204-2. [CrossRef] [PubMed] [Google Scholar]
  • F. Frézard, C. Demicheli, and R. R. Ribeiro, “Pentavalent antimonials: New perspectives for old drugs,” Molecules, vol. 14, no. 7, pp. 2317–2336, 2009, doi: 10.3390/molecules14072317. [CrossRef] [PubMed] [Google Scholar]
  • S. Pradhan, R. A. Schwartz, A. Patil, S. Grabbe, and M. Goldust, “Treatment options for leishmaniasis,” Clin. Exp. Dermatol., vol. 47, no. 3, pp. 516–521, 2022, doi: 10.1111/ced.14919. [CrossRef] [PubMed] [Google Scholar]
  • O. P. Singh, B. Singh, J. Chakravarty, and S. Sundar, “Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective,” Infect. Dis. Poverty, vol. 5, no. 1, 2016, doi: 10.1186/s40249-016-0112-2. [CrossRef] [Google Scholar]
  • A. S. N. Formagio et al., “The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill,” BMC Complement. Altern. Med., vol. 13, 2013, doi: 10.1186/1472-6882-13-14. [Google Scholar]
  • D. Chang, J. Liu, and D. J. Bhuyan, “Strengthening the scientific base of traditional medicine through international collaboration and partnerships,” J. Ayurveda Integr. Med., vol. 14, no. 3, p. 100747, 2023, doi: 10.1016/j.jaim.2023.100747. [CrossRef] [Google Scholar]
  • N. Fujii, Y. Yamashita, Y. Arima, M. Nagashima, and H. Nakano, “Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin,” Antimicrob. Agents Chemother., vol. 36, no. 12, pp. 2589–2594, 1992, doi: 10.1128/AAC.36.12.2589. [CrossRef] [PubMed] [Google Scholar]
  • B. P. Awasthi, M. Kathuria, G. Pant, N. Kumari, and K. Mitra, “Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study,” Apoptosis, vol. 21, no. 8, pp. 941–953, 2016, doi: 10.1007/s10495-016-1259-9. [CrossRef] [PubMed] [Google Scholar]
  • T. T. et al., “Effect of MDR1 gene promoter methylation in patients with ulcerative colitis,” Int. J. Mol. Med., vol. 23, no. 4, pp. 521–527, 2009, doi: 10.3892/ijmm. [Google Scholar]
  • G. A. Gutiérrez-Rebolledo, S. Drier-Jonas, and M. A. Jiménez-Arellanes, “Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update,” Asian Pac. J. Trop. Med., vol. 10, no. 12, pp. 1105–1110, 2017, doi: 10.1016/j.apjtm.2017.10.016. [CrossRef] [Google Scholar]
  • M. P. del Rayo Camacho J David; Croft, Simon L; Yardley, Vanesa; Solis, Pablo N, “In vitro Antiprotozoal and Cytotoxic Activities of Some Alkaloids, Quinones, Flavonoids, and Coumarins,” Planta Med, vol. 70, no. 01, pp. 70–72, 2004, doi: 10.1055/s-2004-815460. [CrossRef] [PubMed] [Google Scholar]
  • N. M. F. Lima et al., “Antileishmanial activity of lapachol analogues,” Mem. Inst. Oswaldo Cruz, vol. 99, no. 7, pp. 757–761, 2004, doi: 10.1590/S0074-02762004000700017. [CrossRef] [PubMed] [Google Scholar]
  • G. Bringmann, A. Hamm, C. Gü, M. Michel, R. Brun, and V. Mudogo, “Ancistroealaines A and B, Two New Bioactive Naphthylisoquinolines, and Related Naphthoic Acids from Ancistrocladus ealaensis 1 Figure 1. Natural products from Ancistrocladus ealaensis,” J. Nat. Prod, vol. 63, pp. 1465–1470, 2000. [CrossRef] [PubMed] [Google Scholar]
  • G. Bringmann, K. Messer, R. Brun, and V. Mudogo, “Ancistrocongolines A-D, new naphthylisoquinoline alkaloids from Ancistrocladus congolensis,” J. Nat. Prod., vol. 65, no. 8, pp. 1096–1101, 2002, doi: 10.1021/np010622d. [CrossRef] [PubMed] [Google Scholar]
  • G. Bringmann et al., “Six naphthylisoquinoline alkaloids and a related benzopyranone from a Congolese Ancistrocladus species related to Ancistrocladus congolensis,” Phytochemistry, vol. 69, no. 4, pp. 1065–1075, 2008, doi: 10.1016/j.phytochem.2007.10.027. [CrossRef] [PubMed] [Google Scholar]
  • E. T. Nkwengoua, I. Ngantchou, B. Nyasse, C. Denier, C. Blonski, and B. Schneider, “In vitro inhibitory effects of palmatine from Enantia chlorantha on Trypanosoma cruzi and Leishmania infantum,” Nat. Prod. Res., vol. 23, no. 12, pp. 1144–1150, 2009, doi: 10.1080/14786410902726241. [CrossRef] [PubMed] [Google Scholar]
  • A. K. Ghosh, F. K. Bhattacharyya, and D. K. Ghosh, “Leishmania donovani: Amastigote inhibition and mode of actior of berberine,” Exp. Parasitol., vol. 60, no. 3, pp. 404–413, 1985, doi: 10.1016/0014-4894(85)90047-5. [CrossRef] [Google Scholar]
  • S. Ghodsian, N. Taghipour, N. Deravi, H. Behniafar, and Z. Lasjerdi, “Recent researches in effective antileishmanial herbal compounds: narrative review,” Parasitol. Res., vol. 119, no. 12, pp. 3929–3946, 2020, doi: 10.1007/s00436-020-06787-0. [CrossRef] [PubMed] [Google Scholar]
  • H. Mahmoudv et al., “In vitro inhibitory effect of Berberis vulgaris (Berberidaceae) and Its main component, Berberine against different leishmania species,” Iran. J. Parasitol., vol. 9, no. 1, pp. 28–36, 2014. [Google Scholar]
  • T. Genus and B. Properties, “The Genus,” vol. 27, no. 8, pp. 1355–1378, 2016. [Google Scholar]
  • D. C. Soares et al., “Leishmanicidal activity of Himatanthus sucuuba latex against Leishmania amazonensis,” Parasitol. Int., vol. 59, no. 2, pp. 173–177, 2010, doi: 10.1016/j.parint.2010.01.002. [CrossRef] [Google Scholar]
  • J. Calla-Magariños, T. Quispe, A. Giménez, J. Freysdottir, M. Troye-Blomberg, and C. Fernández, “Quinolinic Alkaloids from Galipea longiflora Krause Suppress Production of Proinflammatory Cytokines in vitro and Control Inflammation in vivo upon Leishmania Infection in Mice,” Scand. J. Immunol., vol. 77, no. 1, pp. 30–38, 2013, doi: 10.1111/sji.12010. [CrossRef] [PubMed] [Google Scholar]
  • A. Fournet et al., “In vivo efficacy of oral and intralesional administration of 2- substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis,” Antimicrob. Agents Chemother., vol. 40, no. 11, pp. 2447–2451, 1996, doi: 10.1128/aac.40.11.2447. [CrossRef] [PubMed] [Google Scholar]
  • B. P. Bermejo, M. J. Abad, A. M. Díaz, L. Villaescusa, M. A. González, and A. M. Silván, “Sesquiterpenes from Jasonia glutinosa: in vitro anti-inflammatory activity.,” Biol. Pharm. Bull., vol. 25, no. 1, pp. 1–4, 2002, doi: 10.1248/bpb.25.1. [CrossRef] [PubMed] [Google Scholar]
  • Prabhakar, P. K., Nath, D., Singh, S., Mittal, A., & Baghel, D. S. (2020). Formulation and evaluation of polyherbal anti-acne combination by using in-vitro model. Biointerface Res. Appl. Chem, 10(1), 4747-4751. [Google Scholar]
  • L. Ozer, J. El-On, A. Golan-Goldhirsh, and J. Gopas, “Leishmania major: Anti-leishmanial activity of Nuphar lutea extract mediated by the activation of transcription factor NF-κB,” Exp. Parasitol., vol. 126, no. 4, pp. 510–516, 2010, doi: 10.1016/j.exppara.2010.05.025. [CrossRef] [Google Scholar]
  • J. C. Delorenzi et al., “Antileishmanial activity of an indole alkaloid from Peschiera australis,” Antimicrob. Agents Chemother., vol. 45, no. 5, pp. 1349–1354, 2001, doi: 10.1128/AAC.45.5.1349-1354.2001. [CrossRef] [PubMed] [Google Scholar]
  • M. Chen et al., “Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania,” Antimicrob. Agents Chemother., vol. 37, no. 12, pp. 2550–2556, 1993, doi: 10.1128/AAC.37.12.2550. [CrossRef] [PubMed] [Google Scholar]
  • M. M. Parvizi, F. Zare, F. Handjani, M. Nimrouzi, and M. M. Zarshenas, “Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on Traditional Persian Medicine,” Dermatol. Ther., vol. 33, no. 4, 2020, doi: 10.1111/dth.13566. [CrossRef] [Google Scholar]
  • A. A. Bekhit, E. El-Agroudy, A. Helmy, T. M. Ibrahim, A. Shavandi, and A. E. D. A. Bekhit, “Leishmania treatment and prevention: Natural and synthesized drugs,” Eur. J. Med. Chem., vol. 160, pp. 229–244, 2018, doi: 10.1016/j.ejmech.2018.10.022. [CrossRef] [Google Scholar]
  • MPrabhakar, Pranav K. “Bacterial siderophores and their potential applications: a review.” Current Molecular Pharmacology 13.4 (2020): 295-305.. [CrossRef] [PubMed] [Google Scholar]
  • M. Shooraj, F. Ramezan Yazdi, and S. A. Mahdavi, “A Review of the Effects of Herbal Medicines on Leishmaniasis,” Tabari Biomed. Student Res. J., 2022, doi: 10.18502/tbsrj.v4i2.9665. [Google Scholar]
  • Prabhakar, P. K., & Lakhanpal, J. (2020). Recent advances in the nucleic acid-based diagnostic tool for coronavirus. Molecular Biology Reports, 47, 9033-9041. [CrossRef] [PubMed] [Google Scholar]
  • S. Hazra et al., “Evaluation of a diospyrin derivative as antileishmanial agent and potential modulator of ornithine decarboxylase of Leishmania donovani,” Exp. Parasitol., vol. 135, no. 2, pp. 407–413, 2013, doi: 10.1016/j.exppara.2013.07.021. [CrossRef] [Google Scholar]
  • A. Fournet, A. A. Barrios, V. Munoz, R. Hocquemiller, and A. Cave, “Effect of natural naphthoquinones in BALB/c mice infected with Leishmania amazonensis and L. venezuelensis,” Trop. Med. Parasitol., vol. 43, no. 4, pp. 219–222, 1992. [Google Scholar]
  • E. C. Torres-Santos, D. L. Moreira, M. A. C. Kaplan, M. N. Meirelles, and B. Rossi-Bergmann, “Selective effect of 2’,6’-dihydroxy-4’-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis,” Antimicrob. Agents Chemother., vol. 43, no. 5, pp. 1234–1241, 1999, doi: 10.1128/aac.43.5.1234. [CrossRef] [PubMed] [Google Scholar]
  • D. C. O. Gomes, M. F. Muzitano, S. S. Costa, and B. Rossi-Bergmann, “Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis,” Parasitology, vol. 137, no. 4, pp. 613–618, 2010, doi: 10.1017/S0031182009991405. [CrossRef] [PubMed] [Google Scholar]
  • M. F. Muzitano et al., “Oral metabolism and efficacy of Kalanchoe pinnata flavonoids in a murine model of cutaneous leishmaniasis,” Planta Med., vol. 75, no. 4, pp. 307–311, 2009, doi: 10.1055/s-0028-1088382. [CrossRef] [PubMed] [Google Scholar]
  • M. García, L. Monzote, A. M. Montalvo, and R. Scull, “Screening of medicinal plants against Leishmania amazonensis,” Pharm. Biol., vol. 48, no. 9, pp. 1053–1058, 2010, doi: 10.3109/13880200903485729. [CrossRef] [PubMed] [Google Scholar]
  • L. C. Manjolin, M. B. G. Dos Reis, C. Do Carmo Maquiaveli, O. A. Santos-Filho, and E. R. Da Silva, “Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection,” Food Chem., vol. 141, no. 3, pp. 2253–2262, 2013, doi: 10.1016/j.foodchem.2013.05.025. [CrossRef] [Google Scholar]
  • S. Mann et al., “A Review of Leishmaniasis: Current Knowledge and Future Directions,” Curr. Trop. Med. Reports, vol. 8, no. 2, pp. 121–132, 2021, doi: 10.1007/s40475-021-00232-7. [CrossRef] [Google Scholar]
  • M. Chen, S. B. Christensen, T. G. Theander, and A. Kharazmi, “Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani,” Antimicrob. Agents Chemother., vol. 38, no. 6, pp. 1339–1344, 1994, doi: 10.1128/AAC.38.6.1339. [CrossRef] [PubMed] [Google Scholar]
  • E. C. Torres-Santos, S. A. G. Da Silva, S. S. Costa, A. P. P. T. Santos, A. P. Almeida, and B. Rossi-Bergmann, “Toxicological analysis and effectiveness of oral Kalanchoe pinnata on a human case of cutaneous leishmaniasis,” Phyther. Res., vol. 17, no. 7, pp. 801–803, 2003, doi: 10.1002/ptr.1242. [CrossRef] [PubMed] [Google Scholar]
  • B. J. Cabanillas et al., “Dihydrochalcones and benzoic acid derivatives from piper dennisii,” Planta Med., vol. 78, no. 9, pp. 914–918, 2012, doi: 10.1055/s-0031-1298459. [CrossRef] [PubMed] [Google Scholar]
  • M. M. Salem and K. A. Werbovetz, “Antiprotozoal compounds from Psorothamnus polydenius,” J. Nat. Prod., vol. 68, no. 1, pp. 108–111, 2005, doi: 10.1021/np049682k. [CrossRef] [PubMed] [Google Scholar]
  • M. Salem and K. Werbovetz, “Natural Products from Plants as Drug Candidates and Lead Compounds Against Leishmaniasis and Trypanosomiasis,” Curr. Med. Chem., vol. 13, no. 21, pp. 2571–2598, 2006, doi: 10.2174/092986706778201611. [CrossRef] [Google Scholar]
  • S. A. G. Da Silva, S. S. Costa, S. C. F. Mendonça, E. M. Silva, V. L. G. Moraes, and B. Rossi-Bergmann, “Therapeutic effect of oral Kalanchoe pinnata leaf extract in murine leishmaniasis,” Acta Trop., vol. 60, no. 3, pp. 201–210, 1995, doi: 10.1016/0001-706X(95)00128-2. [CrossRef] [Google Scholar]
  • Trukhanov, S.V., Trukhanov, A.V., Salem, M.M., Trukhanova, E.L., Panina, L.V., Kostishyn, V.G., Darwish, M.A., Trukhanov, A.V., Zubar, T.I., Tishkevich, D.I. and Sivakov, V., 2018. Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11. 9Al0. 1O19) 1-x-(BaTiO3) x bicomponent ceramics. Ceramics International, 44(17), pp.21295-21302. [CrossRef] [Google Scholar]
  • Chhikara, N., Kaur, R., Jaglan, S., Sharma, P., Gat, Y. and Panghal, A., 2018. Bioactive compounds and pharmacological and food applications of Syzygiumcumini–a review. Food & function, 9(12), pp.6096-6115. [CrossRef] [PubMed] [Google Scholar]
  • Singh, S., Anil, A.G., Khasnabis, S., Kumar, V., Nath, B., Adiga, V., Naik, T.S.K., Subramanian, S., Kumar, V., Singh, J. and Ramamurthy, P.C., 2022. Sustainable removal of Cr (VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environmental Research, 203, p.111891. [Google Scholar]
  • Charbe, N.B., Amnerkar, N.D., Ramesh, B., Tambuwala, M.M., Bakshi, H.A., Aljabali, A.A., Khadse, S.C., Satheeshkumar, R., Satija, S., Metha, M. and Chellappan, D.K., 2020. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharmaceutica Sinica B, 10(11), pp.2075-2109. [CrossRef] [PubMed] [Google Scholar]
  • Mishra, V., Thakur, S., Patil, A. and Shukla, A., 2018. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert opinion on drug delivery, 15(8), pp.737-758. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.