Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01031
Number of page(s) 15
DOI https://doi.org/10.1051/bioconf/20248601031
Published online 12 January 2024
  • A. H. Bakhtiary, E. Fatemi, M. Emami, and M. Malek, “Phonophoresis of dexamethasone sodium phosphate may manage pain and symptoms of patients with carpal tunnel syndrome,” Clin. J. Pain, vol. 29, no. 4, pp. 348–353, 2013, doi: 10.1097/AJP.0b013e318255c090. [CrossRef] [PubMed] [Google Scholar]
  • N. Yildiz, N. S. Atalay, G. O. Gungen, E. Sanal, N. Akkaya, and O. Topuz, “Comparison of ultrasound and ketoprofen phonophoresis in the treatment of carpal tunnel syndrome,” J. Back Musculoskelet. Rehabil., vol. 24, no. 1, pp. 39–47, 2011, doi: 10.3233/BMR-2011-0273. [CrossRef] [Google Scholar]
  • S. S. R, B. Bellare, and I. Ray, “A Review on Ultrasound Parameters and Methods of Application in Transdermal Drug Delivery,” Int. J. Heal. Sci. Res., vol. 5, no. May, p. 476, 2015. [Google Scholar]
  • P. Oktayoǧlu et al., “Comparison of the efficacy of phonophoresis and conventional ultrasound therapy in patients with primary knee osteoarthritis,” Erciyes Tip Derg., vol. 36, no. 1, pp. 11–18, 2014, doi: 10.5152/etd.2013.64. [CrossRef] [Google Scholar]
  • L. Machet and A. Boucaud, “Phonophoresis: Efficiency, mechanisms and skin tolerance,” Int. J. Pharm., vol. 243, no. 1–2, pp. 1–15, 2002, doi: 10.1016/S0378-5173(02)00299-5. [CrossRef] [Google Scholar]
  • S. Ebrahimi, K. Abbasnia, A. Motealleh, N. Kooroshfard, F. Kamali, and F. Ghaffarinezhad, “Effect of lidocaine phonophoresis on sensory blockade: Pulsed or continuous mode of therapeutic ultrasound?,” Physiotherapy, vol. 98, no. 1, pp. 57–63, 2012, doi: 10.1016/j.physio.2011.01.009. [CrossRef] [PubMed] [Google Scholar]
  • S. Saliba, D. J. Mistry, D. H. Perrin, J. Gieck, and A. Weltman, “Phonophoresis and the absorption of dexamethasone in the presence of an occlusive dressing,” J. Athl. Train., vol. 42, no. 3, pp. 349–354, 2007, doi: 10.1016/s0162-0908(08)79275-4. [Google Scholar]
  • K. Dorji et al., “The effect of ultrasound or phonophoresis as an adjuvant treatment for non-specific neck pain: systematic review of randomised controlled trials,” Disabil. Rehabil., vol. 44, no. 13, pp. 2968–2974, 2022, doi: 10.1080/09638288.2020.1851785. [CrossRef] [PubMed] [Google Scholar]
  • “mcelnay1993.pdf.” [Google Scholar]
  • N. Policy and R. Policy, “Phonophoresis,” 2019. [Google Scholar]
  • J. Y. Fang, C. L. Fang, K. C. Sung, and H. Y. Chen, “Effect of low frequency ultrasound on the in vitro percutaneous absorption of clobetasol 17-propionate,” Int. J. Pharm., vol. 191, no. 1, pp. 33–42, 1999, doi: 10.1016/S0378-5173(99)00230-6. [CrossRef] [Google Scholar]
  • M. Meshali, H. Abdel-Aleem, F. Sakr, S. Nazzal, and Y. El-Malah, “Effect of gel composition and phonophoresis on the transdermal delivery of ibuprofen: In vitro and in vivo evaluation,” Pharm. Dev. Technol., vol. 16, no. 2, pp. 93–101, 2011, doi: 10.3109/10837450903499358. [CrossRef] [PubMed] [Google Scholar]
  • S. Mitragotri, J. Farrell, H. Tang, T. Terahara, J. Kost, and R. Langer, “Determination of threshold energy dose for ultrasound-induced transdermal drug transport,” J. Control. Release, vol. 63, no. 1–2, pp. 41–52, 2000, doi: 10.1016/S0168-3659(99)00178-9. [CrossRef] [Google Scholar]
  • M. Tens, “Ww Ec Tr Ot He Ra Py . O Ec Tr Ot He Ra Py . O Ec Tr Ot He Ra Py . O Ec Tr Ot He Ra Py . O,” pp. 1–6, 1987. [Google Scholar]
  • A. Shaw, E. Martin, J. Haller, and G. Haar, “Equipment, measurement and dose — a survey for therapeutic ultrasound,” J. Ther. Ultrasound, pp. 1–9, 2016, doi: 10.1186/s40349-016-0051-1. [Google Scholar]
  • L. D. Johns, “Nonthermal effects of therapeutic ultrasound: The frequency resonance hypothesis,” J. Athl. Train., vol. 37, no. 3, pp. 293–299, 2002. [Google Scholar]
  • L. Altan, M. Kasapoğlu Aksoy, and E. Kösegil Öztürk, “Efficacy of diclofenac & thiocolchioside gel phonophoresis comparison with ultrasound therapy on acute low back pain; a prospective, double-blind, randomized clinical study,” Ultrasonics, vol. 91, pp. 201–205, 2019, doi: 10.1016/j.ultras.2018.08.008. [CrossRef] [PubMed] [Google Scholar]
  • G. K. Lewis, M. D. Langer, C. R. Henderson, and R. Ortiz, “Design and evaluation of a wearable self-applied therapeutic ultrasound device for chronic myofascial pain,” Ultrasound Med. Biol., vol. 39, no. 8, pp. 1429–1439, 2013, doi: 10.1016/j.ultrasmedbio.2013.03.007. [CrossRef] [Google Scholar]
  • V. Zderic, J. I. Clark, and S. Vaezy, “Drug Delivery Into the Eye,” pp. 1349–1359, 2004. [Google Scholar]
  • F. Aptel and C. Lafon, “Therapeutic applications of ultrasound in ophthalmology,” Int. J. Hyperth., vol. 28, no. 4, pp. 405–418, 2012, doi: 10.3109/02656736.2012.665566. [CrossRef] [PubMed] [Google Scholar]
  • C. D. Yang, J. Jessen, and K. Y. Lin, “Ultrasound-assisted ocular drug delivery: A review of current evidence,” J. Clin. Ultrasound, vol. 50, no. 5, pp. 685–693, 2022, doi: 10.1002/jcu.23214. [CrossRef] [PubMed] [Google Scholar]
  • N. Saffari, “Therapeutic ultrasound - Exciting applications and future challenges,” AIP Conf. Proc., vol. 1949, 2018, doi: 10.1063/1.5031498. [Google Scholar]
  • M. Krajewska-Włodarczyk, Z. Żuber, and A. Owczarczyk-Saczonek, “Ultrasound evaluation of the effectiveness of the use of acitretin in the treatment of nail psoriasis,” J. Clin. Med., vol. 10, no. 10, pp. 10–19, 2021, doi: 10.3390/jcm10102122. [Google Scholar]
  • M. S. Torkar A, Kristl J, “Low-frequency ultrasound to enhance topical drug delivery to the nail.,” Aaps J, vol. 9, p. T3221, 2007. [Google Scholar]
  • J. Sitta and C. M. Howard, “Applications of ultrasound-mediated drug delivery and gene therapy,” Int. J. Mol. Sci., vol. 22, no. 21, 2021, doi: 10.3390/ijms222111491. [CrossRef] [Google Scholar]
  • C. H. Miao et al., “Ultrasound Enhances Gene Delivery of Human Factor IX Plasmid,” vol. 905, no. July, pp. 893–905, 2005. [Google Scholar]
  • S. R. Sirsi and M. A. Borden, “Advances in ultrasound mediated gene therapy using microbubble contrast agents,” Theranostics, vol. 2, no. 12, pp. 1208–1222, 2012, doi: 10.7150/thno.4306. [CrossRef] [PubMed] [Google Scholar]
  • S. B. Raymond, L. H. Treat, J. D. Dewey, N. J. McDannold, K. Hynynen, and B. J. Bacskai, “Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models,” PLoS One, vol. 3, no. 5, pp. 1–7, 2008, doi: 10.1371/journal.pone.0002175. [Google Scholar]
  • T. Nhan, A. Burgess, E. E. Cho, B. Stefanovic, L. Lilge, and K. Hynynen, “Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: Quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy,” J. Control. Release, vol. 172, no. 1, pp. 274–280, 2013, doi: 10.1016/j.jconrel.2013.08.029. [CrossRef] [Google Scholar]
  • A. Tezel, S. Paliwal, Z. Shen, and S. Mitragotri, “Low-frequency ultrasound as a transcutaneous immunization adjuvant,” Vaccine, vol. 23, no. 29, pp. 3800–3807, 2005, doi: 10.1016/j.vaccine.2005.02.027. [CrossRef] [PubMed] [Google Scholar]
  • S. J. Warden, “A New Direction for Ultrasound Therapy in Sports Medicine,” vol. 33, no. 2, pp. 95–107, 2003. [Google Scholar]
  • I. Rosenthal, J. Z. Sostaric, and P. Riesz, “Sonodynamic therapy –– a review of the synergistic effects of drugs and ultrasound,” vol. 11, pp. 349–363, 2004, doi: 10.1016/j.ultsonch.2004.03.004. [Google Scholar]
  • S. Majumdar and P. Sujatha Devi, “Synthesis of SnO2 nanoparticles using ultrasonication,” AIP Conf. Proc., vol. 1276, no. 1, pp. 1–7, 2010, doi: 10.1063/1.3504298. [Google Scholar]
  • Y. Ogura, W. H. Parsons, S. S. Kamat, and B. F. Cravatt, “乳 鼠 心 肌 提 取 HHS Public Access,” Physiol. Behav., vol. 176, no. 10, pp. 139–148, 2017, doi: 10.1007/s10840-013-9845-z.Cardiovascular. [CrossRef] [Google Scholar]
  • E. Maione, K. K. Shung, R. J. Meyer, J. W. Hughes, R. E. Newnham, and N. B. Smith, “Transducer design for a portable ultrasound enhanced transdermal drug-delivery system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 10, pp. 1430–1436, 2002, doi: 10.1109/TUFFC.2002.1041084. [CrossRef] [PubMed] [Google Scholar]
  • N. B. Smith, S. Lee, E. Maione, R. B. Roy, S. McElligott, and K. K. Shung, “Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs,” Ultrasound Med. Biol., vol. 29, no. 2, pp. 311–317, 2003, doi: 10.1016/S0301-5629(02)00706-8. [CrossRef] [Google Scholar]
  • N. DiFonzo and P. Bordia, “Reproduced with permission of the copyright owner . Further reproduction prohibited without,” J. Allergy Clin. Immunol., vol. 130, no. 2, p. 556, 1998. [Google Scholar]
  • J. Luis, E. J. Park, R. J. Meyer, and N. B. Smith, “Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery,” J. Acoust. Soc. Am., vol. 122, no. 4, pp. 2022–2030, 2007, doi: 10.1121/1.2769980. [CrossRef] [PubMed] [Google Scholar]
  • Trukhanov, S.V., Trukhanov, A.V., Salem, M.M., Trukhanova, E.L., Panina, L.V., Kostishyn, V.G., Darwish, M.A., Trukhanov, A.V., Zubar, T.I., Tishkevich, D.I. and Sivakov, V., 2018. Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11. 9Al0. 1O19) 1-x-(BaTiO3) x bicomponent ceramics. Ceramics International, 44(17), pp.21295-21302. [CrossRef] [Google Scholar]
  • Chhikara, N., Kaur, R., Jaglan, S., Sharma, P., Gat, Y. and Panghal, A., 2018. Bioactive compounds and pharmacological and food applications of Syzygiumcumini–a review. Food & function, 9(12), pp.6096-6115. [CrossRef] [PubMed] [Google Scholar]
  • Singh, S., Anil, A.G., Khasnabis, S., Kumar, V., Nath, B., Adiga, V., Naik, T.S.K., Subramanian, S., Kumar, V., Singh, J. and Ramamurthy, P.C., 2022. Sustainable removal of Cr (VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environmental Research, 203, p.111891. [CrossRef] [PubMed] [Google Scholar]
  • nCharbe, N.B., Amnerkar, N.D., Ramesh, B., Tambuwala, M.M., Bakshi, H.A., Aljabali, A.A., Khadse, S.C., Satheeshkumar, R., Satija, S., Metha, M. and Chellappan, D.K., 2020. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharmaceutica Sinica B, 10(11), pp.2075-2109. [CrossRef] [PubMed] [Google Scholar]
  • Mishra, V., Thakur, S., Patil, A. and Shukla, A., 2018. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert opinion on drug delivery, 15(8), pp.737-758. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.