Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01030
Number of page(s) 14
Published online 12 January 2024
  • W. Zeng, L. Jin, F. Zhang, C. Zhang, and W. Liang, “Naringenin as a potential immunomodulator in therapeutics,” Pharmacological Research, vol. 135, pp. 122-126, 2018. [CrossRef] [PubMed] [Google Scholar]
  • A. W. Khan, S. Kotta, S. H. Ansari, R. K. Sharma, and J. Ali, “Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation,” Drug delivery, vol. 22, no. 4, pp. 552-561, 2015. [CrossRef] [PubMed] [Google Scholar]
  • S. Zhang et al., “Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin,” Natural product research, vol. 33, no. 12, pp. 1756-1760, 2019. [CrossRef] [PubMed] [Google Scholar]
  • P. Sharma, V. Kumar, and P. Guleria, “Naringin: Biosynthesis and pharmaceutical applications,” Indian Journal of Pharmaceutical Sciences, vol. 81, no. 6, pp. 988-999, 2019. [CrossRef] [Google Scholar]
  • P. Jeandet et al., “Engineering stilbene metabolic pathways in microbial cells,” Biotechnology advances, vol. 36, no. 8, pp. 2264-2283, 2018. [CrossRef] [PubMed] [Google Scholar]
  • R. Álvarez-Álvarez, A. Botas, S. M. Albillos, A. Rumbero, J. F. Martín, and P. Liras, “Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus,” Microbial cell factories, vol. 14, no. 1, pp. 1-12, 2015. [CrossRef] [PubMed] [Google Scholar]
  • N. H. Zaidun, Z. C. Thent, and A. Abd Latiff, “Combating oxidative stress disorders with citrus flavonoid: Naringenin,” Life sciences, vol. 208, pp. 111-122, 2018. [CrossRef] [PubMed] [Google Scholar]
  • J. H. Kim and J. K. Lee, “Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt’s lymphoma cells,” Archives of pharmacal research, vol. 38, pp. 2042-2048, 2015. [CrossRef] [PubMed] [Google Scholar]
  • S. M. Prabu, K. Shagirtha, and J. Renugadevi, “Naringenin in combination with vitamins C and E potentially protects oxidative stress-mediated hepatic injury in cadmium-intoxicated rats,” Journal of nutritional science and vitaminology, vol. 57, no. 2, pp. 177-185, 2011. [CrossRef] [PubMed] [Google Scholar]
  • Y. Liang, D. Hou, Z. Ni, M. Cao, and L. Cai, “Preparation, characterization of naringenin, β-cyclodextrin and carbon quantum dot antioxidant nanocomposites,” Food Chemistry, vol. 375, p. 131646, 2022. [CrossRef] [PubMed] [Google Scholar]
  • J. Mundlia, M. Ahuja, P. Kumar, and V. Pillay, “Improved antioxidant, antimicrobial and anticancer activity of naringenin on conjugation with pectin,” 3 Biotech, vol. 9, pp. 1-14, 2019. [CrossRef] [PubMed] [Google Scholar]
  • E. Hernández-Aquino and P. Muriel, “Beneficial effects of naringenin in liver diseases: Molecular mechanisms,” World journal of gastroenterology, vol. 24, no. 16, p. 1679, 2018. [CrossRef] [PubMed] [Google Scholar]
  • W.-C. Lin and J.-Y. Lin, “Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro,” Journal of Agricultural and Food Chemistry, vol. 59, no. 1, pp. 184-192, 2011. [CrossRef] [PubMed] [Google Scholar]
  • T.-W. Chung, S. Li, C.-C. Lin, and S.-W. Tsai, “Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin,” Tzu-Chi Medical Journal, vol. 31, no. 2, p. 81, 2019. [Google Scholar]
  • F. A. Pinho-Ribeiro et al., “The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation,” The Journal of nutritional biochemistry, vol. 33, pp. 8-14, 2016. [CrossRef] [PubMed] [Google Scholar]
  • H. Kataoka, A. Saeki, A. Hasebe, K. i. Shibata, and T. Into, “Naringenin suppresses Toll‐like receptor 2‐mediated inflammatory responses through inhibition of receptor clustering on lipid rafts,” Food Science & Nutrition, vol. 9, no. 2, pp. 963-972, 2021. [CrossRef] [PubMed] [Google Scholar]
  • M. Sun et al., “Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco,” Molecular Plant Pathology, vol. 23, no. 12, pp. 1737-1750, 2022. [CrossRef] [PubMed] [Google Scholar]
  • D. Bhargava, A. Deshpande, S. Thomas, Y. Sharma, P. Khare, S.K. Sahu, S. Dubey, A. Pandey, K. Sreekumar,“High performance liquid chromatography determination of dexamethasone in plasma to evaluate its systemic absorption following intra-space pterygomandibular injection of twin-mix (mixture of 2% lignocaine with 1: 200,000 epinephrine and 4 mg dexamethasone): randomized control trial,”Oral and Maxillofacial Surgery, vol. 20, pp. 259-64, 2016. [CrossRef] [PubMed] [Google Scholar]
  • P.K. Singh, B. Gorain, H. Choudhury, S.K. Singh, P. Whadwa, S. Sahu, M. Gulati, P. Kesharwani, “Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis,” Materials Science and Engineering: B, vol. 258, p. 114571, 2020. [CrossRef] [Google Scholar]
  • R. Kumar and A. Bhan Tiku, “Naringenin suppresses chemically induced skin cancer in two-stage skin carcinogenesis mouse model,” Nutrition and cancer, vol. 72, no. 6, pp. 976-983, 2020. [CrossRef] [PubMed] [Google Scholar]
  • J. Stabrauskiene, D. M. Kopustinskiene, R. Lazauskas, and J. Bernatoniene, “Naringin and naringenin: Their mechanisms of action and the potential anticancer activities,” Biomedicines, vol. 10, no. 7, p. 1686, 2022. [CrossRef] [PubMed] [Google Scholar]
  • S. Noori, M. R. Tavirani, N. Deravi, M. I. M. Rabbani, and A. Zarghi, “Naringenin enhances the anti-cancer effect of cyclophosphamide against MDA-MB-231 breast cancer cells via targeting the STAT3 signaling pathway,” Iranian journal of pharmaceutical research: IJPR, vol. 19, no. 3, p. 122, 2020. [Google Scholar]
  • A. Verma, B. Kaur, S. Venugopal, P. Wadhwa, S. Sahu, P. Kaur, D. Kumar, A. Sharma, “Tetrazole: A privileged scaffold for the discovery of anticancer agents,” Chemical Biology & Drug Design, vol. 100, no. 3, 419-42, 2022. [CrossRef] [PubMed] [Google Scholar]
  • Z. C. Sun et al., “Evaluation of the antiviral activity of naringenin, a major constituent of Typha angustifolia, against white spot syndrome virus in crayfish Procambarus clarkii,” Journal of Fish Diseases, vol. 44, no. 10, pp. 1503-1513, 2021. [CrossRef] [PubMed] [Google Scholar]
  • R. Morimoto, C. Matsubara, A. Hanada, Y. Omoe, T. Ogata, and Y. Isegawa, “Effect of Structural Differences in Naringenin, Prenylated Naringenin, and Their Derivatives on the Anti-Influenza Virus Activity and Cellular Uptake of Their Flavanones,” Pharmaceuticals, vol. 15, no. 12, p. 1480, 2022. [CrossRef] [PubMed] [Google Scholar]
  • S. Frabasile et al., “The citrus flavanone naringenin impairs dengue virus replication in human cells,” Scientific reports, vol. 7, no. 1, pp. 1-11, 2017. [CrossRef] [PubMed] [Google Scholar]
  • L. A. de Oliveira Mendes et al., “The anti-Zika virus and anti-tumoral activity of the citrus flavanone lipophilic naringenin-based compounds,” Chemico-Biological Interactions, vol. 331, p. 109218, 2020. [CrossRef] [PubMed] [Google Scholar]
  • N. A. Nyane, T. B. Tlaila, T. G. Malefane, D. E. Ndwandwe, and P. M. O. Owira, “Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights,” European Journal of Pharmacology, vol. 803, pp. 103-111, 2017. [CrossRef] [PubMed] [Google Scholar]
  • A. Nishina, D. Sato, J. Yamamoto, K. Kobayashi‐Hattori, Y. Hirai, and H. Kimura, “Antidiabetic‐like effects of Naringenin‐7‐O‐glucoside from Edible Chrysanthemum ‘Kotobuki’and Naringenin by Activation of the PI3K/Akt Pathway and PPARγ,” Chemistry & Biodiversity, vol. 16, no. 1, p. e1800434, 2019. [CrossRef] [Google Scholar]
  • D. J. Den Hartogh and E. Tsiani, “Antidiabetic properties of naringenin: A citrus fruit polyphenol,” Biomolecules, vol. 9, no. 3, p. 99, 2019. [CrossRef] [PubMed] [Google Scholar]
  • S. Li et al., “Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK,” Nutrition & diabetes, vol. 9, no. 1, p. 28, 2019. [CrossRef] [PubMed] [Google Scholar]
  • Y. Q. Hua, Y. Zeng, J. Xu, and X. Le Xu, “Naringenin alleviates nonalcoholic steatohepatitis in middle-aged Apoe−/− mice: role of SIRT1,” Phytomedicine, vol. 81, p. 153412, 2021. [CrossRef] [PubMed] [Google Scholar]
  • Q. Wang et al., “Naringenin attenuates non‐alcoholic fatty liver disease by down‐regulating the NLRP3/NF‐κB pathway in mice,” British Journal of Pharmacology, vol. 177, no. 8, pp. 1806-1821, 2020. [CrossRef] [PubMed] [Google Scholar]
  • B. Salehi et al., “The therapeutic potential of naringenin: a review of clinical trials,” Pharmaceuticals, vol. 12, no. 1, p. 11, 2019. [CrossRef] [PubMed] [Google Scholar]
  • R. Lu et al., “Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity,” Drug Delivery, vol. 29, no. 1, pp. 3256-3269, 2022. [CrossRef] [PubMed] [Google Scholar]
  • O. A. Ahmedy, H. H. Salem, N. H. Sayed, and S. M. Ibrahim, “Naringenin affords protection against lipopolysaccharide/D-galactosamine-induced acute liver failure: role of autophagy,” Archives of Biochemistry and Biophysics, vol. 717, p. 109121, 2022. [CrossRef] [PubMed] [Google Scholar]
  • M. Sugumar, M. Sevanan, and S. Sekar, “Neuroprotective effect of naringenin against MPTP-induced oxidative stress,” International Journal of Neuroscience, vol. 129, no. 6, pp. 534-539, 2019. [CrossRef] [PubMed] [Google Scholar]
  • S. Md, S. Y. Gan, Y. H. Haw, C. L. Ho, S. Wong, and H. Choudhury, “In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation,” International journal of biological macromolecules, vol. 118, pp. 1211-1219, 2018. [CrossRef] [PubMed] [Google Scholar]
  • Z. Nouri et al., “Neuroprotective effect of naringenin‐loaded solid lipid nanoparticles against streptozocin‐induced neurotoxicity through autophagy blockage,” Journal of Food Biochemistry, p. e14408, 2022. [Google Scholar]
  • V. P. K. Muthaiah, L. Venkitasamy, F. M. Michael, K. Chandrasekar, and S. Venkatachalam, “Neuroprotective role of naringenin on carbaryl induced neurotoxicity in mouse neuroblastoma cells,” Journal of pharmacology & pharmacotherapeutics, vol. 4, no. 3, p. 192, 2013. [CrossRef] [PubMed] [Google Scholar]
  • S. Singh, A. Sharma, V. Monga, and R. Bhatia, “Compendium of naringenin: Potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile,” Critical Reviews in Food Science and Nutrition, pp. 1-32, 2022. [Google Scholar]
  • I. Najmanová, M. Vopršalová, L. Saso, and P. Mladěnka, “The pharmacokinetics of flavanones,” Critical reviews in food science and nutrition, vol. 60, no. 18, pp. 3155-3171, 2020. [CrossRef] [PubMed] [Google Scholar]
  • Z. Liu, X. Niu, and J. Wang, “Naringenin as a natural immunomodulator against T cell-mediated autoimmune diseases: Literature review and network-based pharmacology study,” Critical Reviews in Food Science and Nutrition, pp. 1-18, 2022. [Google Scholar]
  • Y. Bai et al., “Pharmacokinetics and metabolism of naringin and active metabolite naringenin in rats, dogs, humans, and the differences between species,” Frontiers in pharmacology, vol. 11, p. 364, 2020. [CrossRef] [PubMed] [Google Scholar]
  • R. Joshi, Y. A. Kulkarni, and S. Wairkar, “Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update,” Life sciences, vol. 215, pp. 43-56, 2018. [CrossRef] [PubMed] [Google Scholar]
  • M. Alsehli, “Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery,” Saudi Pharmaceutical Journal, vol. 28, no. 3, pp. 255-265, 2020. [CrossRef] [Google Scholar]
  • I. Venditti, “Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review,” Journal of King Saud University-Science, vol. 31, no. 3, pp. 398-411, 2019. [CrossRef] [Google Scholar]
  • G. Amoabediny et al., “Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 67, no. 6, pp. 383-400, 2018. [CrossRef] [Google Scholar]
  • S. Chaurasia, R. R. Patel, P. Vure, and B. Mishra, “Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations,” Journal of pharmaceutical sciences, vol. 107, no. 2, pp. 706-716, 2018. [CrossRef] [PubMed] [Google Scholar]
  • S. Maity and A. S. Chakraborti, “Formulation, physico-chemical characterization and antidiabetic potential of naringenin-loaded poly D, L lactide-co-glycolide (N-PLGA) nanoparticles,” European Polymer Journal, vol. 134, p. 109818, 2020. [CrossRef] [Google Scholar]
  • S. Muralidharan and K. Shanmugam, “Synthesis and characterization of naringenin-loaded chitosan-dextran sulfate nanocarrier,” Journal of Pharmaceutical Innovation, vol. 16, pp. 269-278, 2021. [CrossRef] [Google Scholar]
  • M. H. Akhter, S. Kumar, and S. Nomani, “Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: Design, optimization, and in vitro studies,” Drug development and industrial pharmacy, vol. 46, no. 4, pp. 659-672, 2020. [CrossRef] [PubMed] [Google Scholar]
  • L. Wang et al., “Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme,” Biomedicine & Pharmacotherapy, vol. 138, p. 111461, 2021. [CrossRef] [Google Scholar]
  • M. Smruthi, I. Nallamuthu, and T. Anand, “A comparative study of optimized naringenin nanoformulations using nano-carriers (PLA/PVA and zein/pectin) for improvement of bioavailability,” Food Chemistry, vol. 369, p. 130950, 2022. [CrossRef] [PubMed] [Google Scholar]
  • M.-J. Tsai, Y.-B. Huang, J.-W. Fang, Y.-S. Fu, and P.-C. Wu, “Preparation and characterization of naringenin-loaded elastic liposomes for topical application,” PLoS One, vol. 10, no. 7, p. e0131026, 2015. [Google Scholar]
  • Y. Wang et al., “Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations,” Aaps pharmscitech, vol. 18, pp. 586-594, 2017. [CrossRef] [PubMed] [Google Scholar]
  • L. Adhikari, N. Kumar, A. Saha, A. Semalty, and M. Semalty, “NARINGENIN LOADED CYCLODEXTRIN NANOPARTICLES FOR IMPROVED DRUG DELIVERY,” 2022. [Google Scholar]
  • E. V. Fuior et al., “Evaluation of VCAM-1 targeted naringenin/indocyanine green-loaded lipid nanoemulsions as theranostic nanoplatforms in inflammation,” Pharmaceutics, vol. 12, no. 11, p. 1066, 2020. [CrossRef] [PubMed] [Google Scholar]
  • N. Ahmad et al., “Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia,” Saudi Journal of Biological Sciences, vol. 27, no. 1, pp. 500-517, 2020. [CrossRef] [PubMed] [Google Scholar]
  • B. Gaba et al., “Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model,” BioMed research international, vol. 2019, 2019. [CrossRef] [Google Scholar]
  • S. Md et al., “Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells,” Pharmaceuticals, vol. 13, no. 7, p. 152, 2020. [CrossRef] [PubMed] [Google Scholar]
  • H. Wang et al., “Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin,” International Journal of Pharmaceutics, vol. 578, p. 119133, 2020. [CrossRef] [PubMed] [Google Scholar]
  • S. Gera, S. Sampathi, S. Maddukuri, S. Dodoala, V. Junnuthula, and S. Dyawanapelly, “Therapeutic Potential of Naringenin Nanosuspension: In Vitro and In Vivo Anti-Osteoporotic Studies,” Pharmaceutics, vol. 14, no. 7, p. 1449, 2022. [CrossRef] [PubMed] [Google Scholar]
  • S. Gera, S. Talluri, N. Rangaraj, and S. Sampathi, “Formulation and evaluation of naringenin nanosuspensions for bioavailability enhancement,” Aaps Pharmscitech, vol. 18, pp. 3151-3162, 2017. [CrossRef] [PubMed] [Google Scholar]
  • M. K. Singh, D. Pooja, H. G. Ravuri, A. Gunukula, H. Kulhari, and R. Sistla, “Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability,” Phytomedicine, vol. 40, pp. 48-54, 2018. [CrossRef] [PubMed] [Google Scholar]
  • S. H. Akrawi et al., “Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing,” Pharmaceutics, vol. 12, no. 9, p. 893, 2020. [CrossRef] [PubMed] [Google Scholar]
  • Z. Dong et al., “Preparation of naringenin nanosuspension and its antitussive and expectorant effects,” Molecules, vol. 27, no. 3, p. 741, 2022. [CrossRef] [PubMed] [Google Scholar]
  • S. Rajamani, A. Radhakrishnan, T. Sengodan, and S. Thangavelu, “Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells,” Drug development and industrial pharmacy, vol. 44, no. 11, pp. 1752-1761, 2018. [CrossRef] [PubMed] [Google Scholar]
  • X. Zhang et al., “Naringenin attenuates inflammation, apoptosis, and ferroptosis in silver nanoparticle-induced lung injury through a mechanism associated with Nrf2/HO-1 axis: In vitro and in vivo studies,” Life Sciences, vol. 311, p. 121127, 2022. [CrossRef] [PubMed] [Google Scholar]
  • S. Md, S. Abdullah, Z. A. Awan, and N. A. Alhakamy, “Smart Oral pH-responsive dual layer nano-hydrogel for dissolution enhancement and targeted delivery of naringenin using protein-polysaccharides complexation against colorectal cancer,” Journal of Pharmaceutical Sciences, vol. 111, no. 11, pp. 3155-3164, 2022. [CrossRef] [PubMed] [Google Scholar]
  • H. T. Nguyen, A. Hensel, and F. M. Goycoolea, “Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities,” Colloids and Surfaces B: Biointerfaces, vol. 211, p. 112281, 2022. [CrossRef] [Google Scholar]
  • Singh, S., Kumar, V., Romero, R., Sharma, K. and Singh, J., 2019. Applications of nanoparticles in wastewater treatment. Nanobiotechnology in bioformulations, pp.395-418. [Google Scholar]
  • Chong, L., Ramakrishna, S. and Singh, S., 2018. A review of digital manufacturing-based hybrid additive manufacturing processes. The International Journal of Advanced Manufacturing Technology, 95, pp.2281-2300. [CrossRef] [Google Scholar]
  • Kumar, D., Agarwal, G., Tripathi, B., Vyas, D. and Kulshrestha, V., 2009. Characterization of PbS nanoparticles synthesized by chemical bath deposition. Journal of Alloys and Compounds, 484(1-2), pp.463-466. [CrossRef] [Google Scholar]
  • Singh, P.S., Singh, T. and Kaur, P., 2008. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Annals of Nuclear Energy, 35(6), pp.1093-1097. [CrossRef] [Google Scholar]
  • Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., Dalton, B.E., Duprey, J., Cruz, J.A., Hagins, H. and Lindstedt, P.A., 2023. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.