Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01029
Number of page(s) 14
DOI https://doi.org/10.1051/bioconf/20248601029
Published online 12 January 2024
  • C. Fitzmaurice et al., “Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study,” JAMA oncology, vol. 3, no. 4, pp. 524-548, 2017. [Google Scholar]
  • W. H. Organization. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/human-papillomavirus (accessed. [Google Scholar]
  • CDC. “Human Papillomavirus.” https://www.cdc.gov/std/hpv/default.htm (accessed. [Google Scholar]
  • E. Krasniqi et al., “Circulating HPV DNA in the management of oropharyngeal and cervical cancers: current knowledge and future perspectives,” Journal of Clinical Medicine, vol. 10, no. 7, p. 1525, 2021. [CrossRef] [PubMed] [Google Scholar]
  • M. Soheili, H. Keyvani, M. Soheili, and S. Nasseri, “Human papilloma virus: A review study of epidemiology, carcinogenesis, diagnostic methods, and treatment of all HPV-related cancers,” Medical journal of the Islamic Republic of Iran, vol. 35, p. 65, 2021. [PubMed] [Google Scholar]
  • O. P. Zhirnov, “The Unique Genome of the Virus and Alternative Strategies for its Realization,” Acta Naturae, vol. 15, no. 2, p. 14, 2023. [CrossRef] [PubMed] [Google Scholar]
  • A. Petca, A. Borislavschi, M. E. Zvanca, R.-C. Petca, F. Sandru, and M. C. Dumitrascu, “Non-sexual HPV transmission and role of vaccination for a better future,” Experimental and therapeutic medicine, vol. 20, no. 6, pp. 1-1, 2020. [CrossRef] [PubMed] [Google Scholar]
  • A. C. de Freitas, T. H. A. de Oliveira, M. R. Barros, and A. Venuti, “hrHPV E5 oncoprotein: immune evasion and related immunotherapies,” Journal of Experimental & Clinical Cancer Research, vol. 36, no. 1, pp. 1-15, 2017. [CrossRef] [PubMed] [Google Scholar]
  • R. Tian et al., “HPV integration generates a cellular super-enhancer which functions as ecDNA to regulate genome-wide transcription,” Nucleic Acids Research, vol. 51, no. 9, pp. 4237-4251, 2023. [CrossRef] [PubMed] [Google Scholar]
  • L. R. Pack, L. H. Daigh, and T. Meyer, “Putting the brakes on the cell cycle: mechanisms of cellular growth arrest,” Current opinion in cell biology, vol. 60, pp. 106-113, 2019. [CrossRef] [PubMed] [Google Scholar]
  • A. A. McBride and A. Warburton, “The role of integration in oncogenic progression of HPV-associated cancers,” PLoS pathogens, vol. 13, no. 4, p. e1006211, 2017. [Google Scholar]
  • A. I. Baba and C. Câtoi, Comparative oncology. Publishing House of the Romanian Academy Bucharest, 2007. [Google Scholar]
  • G. Hancock, K. Hellner, and L. Dorrell, “Therapeutic HPV vaccines,” Best practice & research Clinical obstetrics & gynaecology, vol. 47, pp. 59-72, 2018. [CrossRef] [Google Scholar]
  • N. Muñoz et al., “Epidemiologic classification of human papillomavirus types associated with cervical cancer,” New England journal of medicine, vol. 348, no. 6, pp. 518-527, 2003. [CrossRef] [PubMed] [Google Scholar]
  • X. Ma and M. Yang, “The correlation between high-risk HPV infection and precancerous lesions and cervical cancer,” American journal of translational research, vol. 13, no. 9, p. 10830, 2021. [PubMed] [Google Scholar]
  • E. Nkwabong, I. Laure Bessi Badjan, and Z. Sando, “Pap smear accuracy for the diagnosis of cervical precancerous lesions,” Tropical Doctor, vol. 49, no. 1, pp. 34-39, 2019. [CrossRef] [PubMed] [Google Scholar]
  • S. Rajaram and B. Gupta, “Screening for cervical cancer: Choices & dilemmas,” The Indian Journal of Medical Research, vol. 154, no. 2, p. 210, 2021. [PubMed] [Google Scholar]
  • Z. Hu and D. Ma, “The precision prevention and therapy of HPV‐related cervical cancer: new concepts and clinical implications,” Cancer medicine, vol. 7, no. 10, pp. 5217-5236, 2018. [CrossRef] [PubMed] [Google Scholar]
  • S. Zhang, H. Xu, L. Zhang, and Y. Qiao, “Cervical cancer: Epidemiology, risk factors and screening,” Chinese Journal of Cancer Research, vol. 32, no. 6, p. 720, 2020. [CrossRef] [PubMed] [Google Scholar]
  • W.-H. Fang, C.-F. Yen, J. Hu, J.-D. Lin, and C.-H. Loh, “The utilization and barriers of Pap smear among women with visual impairment,” International Journal for Equity in Health, vol. 15, pp. 1-9, 2016. [CrossRef] [PubMed] [Google Scholar]
  • P. Olusola, H. N. Banerjee, J. V. Philley, and S. Dasgupta, “Human papilloma virus-associated cervical cancer and health disparities,” Cells, vol. 8, no. 6, p. 622, 2019. [CrossRef] [PubMed] [Google Scholar]
  • R. Zayats, T. T. Murooka, and L. R. McKinnon, “HPV and the Risk of HIV Acquisition in Women,” Frontiers in cellular and infection microbiology, vol. 12, p. 6, 2022. [CrossRef] [Google Scholar]
  • “Centers for Disease Control and Prevention.” https://www.cdc.gov/cancer/hpv/basic_info/hpv_oropharyngeal.htm (accessed. [Google Scholar]
  • N. I. o. Cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer (accessed. [Google Scholar]
  • S. Arora, S. S. Ramachandra, and C. Squier, “Knowledge about human papillomavirus (HPV) related oral cancers among oral health professionals in university setting–A cross sectional study,” Journal of oral biology and craniofacial research, vol. 8, no. 1, pp. 35-39, 2018. [CrossRef] [PubMed] [Google Scholar]
  • L. Cheng, Y. Wang, and J. Du, “Human papillomavirus vaccines: an updated review,” Vaccines, vol. 8, no. 3, p. 391, 2020. [CrossRef] [PubMed] [Google Scholar]
  • C. Quang, A. W. Chung, I. H. Frazer, Z. Q. Toh, and P. V. Licciardi, “Single-dose HPV vaccine immunity: is there a role for non-neutralizing antibodies?,” Trends in Immunology, 2022. [Google Scholar]
  • L. Mariani, M. Preti, P. Cristoforoni, C. M. Stigliano, and A. Perino, “Overview of the benefits and potential issues of the nonavalent HPV vaccine,” International Journal of Gynecology & Obstetrics, vol. 136, no. 3, pp. 258-265, 2017. [CrossRef] [PubMed] [Google Scholar]
  • C. Genovese, V. La Fauci, A. Squeri, G. Trimarchi, and R. Squeri, “HPV vaccine and autoimmune diseases: systematic review and meta-analysis of the literature,” Journal of Preventive Medicine and Hygiene, vol. 59, no. 3, p. E194, 2018. [Google Scholar]
  • L. E. Markowitz et al., “Human papillomavirus vaccine effectiveness against HPV infection: evaluation of one, two, and three doses,” The Journal of infectious diseases, vol. 221, no. 6, pp. 910-918, 2020. [CrossRef] [PubMed] [Google Scholar]
  • E. Adjei Boakye, B. B. Tobo, R. P. Rojek, K. A. Mohammed, C. J. Geneus, and N. Osazuwa-Peters, “Approaching a decade since HPV vaccine licensure: racial and gender disparities in knowledge and awareness of HPV and HPV vaccine,” Human Vaccines & Immunotherapeutics, vol. 13, no. 11, pp. 2713-2722, 2017. [CrossRef] [PubMed] [Google Scholar]
  • L. Mariani and A. Venuti, “HPV vaccine: an overview of immune response, clinical protection, and new approaches for the future,” Journal of translational medicine, vol. 8, no. 1, pp. 1-8, 2010. [CrossRef] [PubMed] [Google Scholar]
  • J. T. Bryan, “Developing an HPV vaccine to prevent cervical cancer and genital warts,” Vaccine, vol. 25, no. 16, pp. 3001-3006, 2007. [CrossRef] [PubMed] [Google Scholar]
  • A. Yang, E. Farmer, T. Wu, and C.-F. Hung, “Perspectives for therapeutic HPV vaccine development,” Journal of biomedical science, vol. 23, no. 1, pp. 1-19, 2016. [CrossRef] [PubMed] [Google Scholar]
  • J. Hirth, “Disparities in HPV vaccination rates and HPV prevalence in the United States: a review of the literature,” Human vaccines & immunotherapeutics, vol. 15, no. 1, pp. 146-155, 2019. [CrossRef] [PubMed] [Google Scholar]
  • L. Toft et al., “Comparison of the immunogenicity of Cervarix® and Gardasil® human papillomavirus vaccines for oncogenic non-vaccine serotypes HPV-31, HPV-33, and HPV-45 in HIV-infected adults,” Human vaccines & immunotherapeutics, vol. 10, no. 5, pp. 1147-1154, 2014. [CrossRef] [PubMed] [Google Scholar]
  • R. M. Correa et al., “Distribution of human papillomavirus genotypes by severity of cervical lesions in HPV screened positive women from the ESTAMPA study in Latin America,” Plos one, vol. 17, no. 7, p. e0272205, 2022. [Google Scholar]
  • C. M. De Oliveira, J. H. T. Fregnani, and L. L. Villa, “HPV vaccine: updates and highlights,” Acta cytologica, vol. 63, no. 2, pp. 159-168, 2019. [CrossRef] [PubMed] [Google Scholar]
  • S. Kamolratanakul and P. Pitisuttithum, “Human papillomavirus vaccine efficacy and effectiveness against cancer,” Vaccines, vol. 9, no. 12, p. 1413, 2021. [CrossRef] [PubMed] [Google Scholar]
  • N. Sompawong et al., “Automated pap smear cervical cancer screening using deep learning,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019: IEEE, pp. 7044-7048. [Google Scholar]
  • Y. Mikami et al., “Gastrointestinal immunophenotype in adenocarcinomas of the uterine cervix and related glandular lesions: a possible link between lobular endocervical glandular hyperplasia/pyloric gland metaplasia and ‘adenoma malignum ‘,” Modern pathology, vol. 17, no. 8, pp. 962-972, 2004. [CrossRef] [PubMed] [Google Scholar]
  • S. M. Gupta and J. Mania-Pramanik, “RETRACTED ARTICLE: Molecular mechanisms in progression of HPV-associated cervical carcinogenesis,” Journal of biomedical science, vol. 26, pp. 1-19, 2019. [CrossRef] [PubMed] [Google Scholar]
  • C. Wirtz et al., “Integrating HPV vaccination programs with enhanced cervical cancer screening and treatment, a systematic review,” Vaccine, vol. 40, pp. A116-A123, 2022. [CrossRef] [PubMed] [Google Scholar]
  • A. Cruz-Gregorio, A. K. Aranda-Rivera, and J. Pedraza-Chaverri, “Human papillomavirus-related cancers and mitochondria,” Virus research, vol. 286, p. 198016, 2020. [CrossRef] [PubMed] [Google Scholar]
  • D. L. Miller, M. D. Puricelli, and M. S. Stack, “Virology and molecular pathogenesis of HPV (human papillomavirus) associated oropharyngeal squamous cell carcinoma,” Biochemical Journal, vol. 443, no. 2, pp. 339-353, 2012. [CrossRef] [PubMed] [Google Scholar]
  • L. Yu, V. Majerciak, and Z.-M. Zheng, “HPV16 and HPV18 genome structure, expression, and post-transcriptional regulation,” International journal of molecular sciences, vol. 23, no. 9, p. 4943, 2022. [CrossRef] [PubMed] [Google Scholar]
  • K. A. Szymonowicz and J. Chen, “Biological and clinical aspects of HPV-related cancers,” Cancer biology & medicine, vol. 17, no. 4, p. 864, 2020. [CrossRef] [PubMed] [Google Scholar]
  • K. S. Okunade, “Human papillomavirus and cervical cancer,” Journal of Obstetrics and Gynaecology, vol. 40, no. 5, pp. 602-608, 2020. [CrossRef] [PubMed] [Google Scholar]
  • A. Agarossi et al., “High‐risk HPV positivity is a long‐term risk factor for recurrence after cervical excision procedure in women living with HIV,” International Journal of Gynecology & Obstetrics, vol. 155, no. 3, pp. 442-449, 2021. [CrossRef] [PubMed] [Google Scholar]
  • E. M. Burd, “Human papillomavirus and cervical cancer,” Clinical microbiology reviews, vol. 16, no. 1, pp. 1-17, 2003. [CrossRef] [PubMed] [Google Scholar]
  • N. Egawa and J. Doorbar, “The low-risk papillomaviruses,” Virus research, vol. 231, pp. 119-127, 2017. [CrossRef] [PubMed] [Google Scholar]
  • H.-U. Bernard, R. D. Burk, Z. Chen, K. Van Doorslaer, H. Zur Hausen, and E.-M. de Villiers, “Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments,” Virology, vol. 401, no. 1, pp. 70-79, 2010. [CrossRef] [Google Scholar]
  • A. K. Chaturvedi et al., “Effect of prophylactic human papillomavirus (HPV) vaccination on oral HPV infections among young adults in the United States,” Journal of Clinical Oncology, vol. 36, no. 3, p. 262, 2018. [CrossRef] [PubMed] [Google Scholar]
  • S. Carse, M. Bergant, and G. Schäfer, “Advances in targeting hpv infection as potential alternative prophylactic means,” International journal of molecular sciences, vol. 22, no. 4, p. 2201, 2021. [CrossRef] [PubMed] [Google Scholar]
  • B. Y. Hernandez et al., “Transmission of human papillomavirus in heterosexual couples,” Emerging infectious diseases, vol. 14, no. 6, p. 888, 2008. [CrossRef] [PubMed] [Google Scholar]
  • J. Yuan et al., “Genital warts treatment: Beyond imiquimod,” Human vaccines & immunotherapeutics, vol. 14, no. 7, pp. 1815-1819, 2018. [CrossRef] [PubMed] [Google Scholar]
  • A. A. McBride, “Human papillomaviruses: diversity, infection and host interactions,” Nature Reviews Microbiology, vol. 20, no. 2, pp. 95-108, 2022. [CrossRef] [PubMed] [Google Scholar]
  • B. Tsehay and M. Afework, “Precancerous lesions of the cervix and its determinants among Ethiopian women: Systematic review and meta-analysis,” PloS one, vol. 15, no. 10, p. e0240353, 2020. [Google Scholar]
  • S. Basoya and A. Anjankar, “Cervical cancer: Early detection and prevention in reproductive age group,” Cureus, vol. 14, no. 11, 2022. [Google Scholar]
  • P.K. Singh, B. Gorain, H. Choudhury, S.K. Singh, P. Whadwa, S. Sahu, M. Gulati, P. Kesharwani,“Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis,” Materials Science and Engineering: B,vol. 258, p. 114571, 2020. [CrossRef] [Google Scholar]
  • M. Liu et al., “Long-read sequencing reveals oncogenic mechanism of HPV-human fusion transcripts in cervical cancer,” Translational Research, vol. 253, pp. 80-94, 2023. [CrossRef] [PubMed] [Google Scholar]
  • J. García-Quiroz, B. Vázquez-Almazán, R. García-Becerra, L. Díaz, and E. Avila, “The interaction of human papillomavirus infection and prostaglandin E2 signaling in carcinogenesis: a focus on cervical cancer therapeutics,” Cells, vol. 11, no. 16, p. 2528, 2022. [CrossRef] [PubMed] [Google Scholar]
  • O. Hassin and M. Oren, “Drugging p53 in cancer: one protein, many targets,” Nature Reviews Drug Discovery, vol. 22, no. 2, pp. 127-144, 2023. [CrossRef] [PubMed] [Google Scholar]
  • A. Vats, O. Trejo-Cerro, M. Thomas, and L. Banks, “Human papillomavirus E6 and E7: What remains?,” Tumour virus research, vol. 11, p. 200213, 2021. [CrossRef] [PubMed] [Google Scholar]
  • A. Pal and R. Kundu, “Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy,” Frontiers in microbiology, vol. 10, p. 3116, 2020. [CrossRef] [PubMed] [Google Scholar]
  • C. K. Chan, G. Aimagambetova, T. Ukybassova, K. Kongrtay, and A. Azizan, “Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination—review of current perspectives,” Journal of oncology, vol. 2019, 2019. [Google Scholar]
  • V. Singh, A. Khurana, U. Navik, P. Allawadhi, K. K. Bharani, and R. Weiskirchen, “Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics,” Sci, vol. 4, no. 2, p. 15, 2022. [CrossRef] [Google Scholar]
  • J. Kuball et al., “Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man,” Gene therapy, vol. 9, no. 13, pp. 833-843, 2002. [CrossRef] [PubMed] [Google Scholar]
  • S. S. Özalp, T. Us, E. Arslan, T. Öge, and N. Kaşifoğlu, “HPV DNA and Pap smear test results in cases with and without cervical pathology,” Journal of the Turkish German Gynecological Association, vol. 13, no. 1, p. 8, 2012. [PubMed] [Google Scholar]
  • W. O. Baamer et al., “The Diagnosis of Cervical Dysplasia in a University Hospital Using Pap Smear and Colposcopy in the Western Region of Saudi Arabia: A Correlational Study,” Cureus, vol. 14, no. 3, 2022. [Google Scholar]
  • S. L. McGraw and J. M. Ferrante, “Update on prevention and screening of cervical cancer,” World journal of clinical oncology, vol. 5, no. 4, p. 744, 2014. [CrossRef] [PubMed] [Google Scholar]
  • B. R. Roman and A. Aragones, “Epidemiology and incidence of HPV‐related cancers of the head and neck,” Journal of Surgical Oncology, vol. 124, no. 6, pp. 920-922, 2021. [CrossRef] [PubMed] [Google Scholar]
  • M. R. Timbang, M. W. Sim, A. F. Bewley, D. G. Farwell, A. Mantravadi, and M. G. Moore, “HPV-related oropharyngeal cancer: a review on burden of the disease and opportunities for prevention and early detection,” Human vaccines & immunotherapeutics, 2019. [Google Scholar]
  • M. Lechner, J. Liu, L. Masterson, and T. R. Fenton, “HPV-associated oropharyngeal cancer: Epidemiology, molecular biology and clinical management,” Nature reviews Clinical oncology, vol. 19, no. 5, pp. 306-327, 2022. [CrossRef] [PubMed] [Google Scholar]
  • J. H. Maxwell, J. R. Grandis, and R. L. Ferris, “HPV-associated head and neck cancer: unique features of epidemiology and clinical management,” Annual review of medicine, vol. 67, pp. 91-101, 2016. [CrossRef] [PubMed] [Google Scholar]
  • B. Serrano, M. Brotons, F. X. Bosch, and L. Bruni, “Epidemiology and burden of HPV-related disease,” Best practice & research Clinical obstetrics & gynaecology, vol. 47, pp. 14-26, 2018. [CrossRef] [Google Scholar]
  • A. A. Shamseddine, B. Burman, N. Y. Lee, D. Zamarin, and N. Riaz, “Tumor immunity and immunotherapy for HPV-related cancers,” Cancer discovery, vol. 11, no. 8, pp. 1896-1912, 2021. [CrossRef] [PubMed] [Google Scholar]
  • M. Brzeziński and M. Stukan, “Anal Cancer and Anal Intraepithelial Neoplasia Risk among Patients Treated for HPV-Related Gynecological Diseases—A Systematic Review,” Journal of Clinical Medicine, vol. 12, no. 13, p. 4216, 2023. [CrossRef] [PubMed] [Google Scholar]
  • I. L. Leeds and S. H. Fang, “Anal cancer and intraepithelial neoplasia screening: A review,” World journal of gastrointestinal surgery, vol. 8, no. 1, p. 41, 2016. [CrossRef] [PubMed] [Google Scholar]
  • D. T. Debela et al., “New approaches and procedures for cancer treatment: Current perspectives,” SAGE open medicine, vol. 9, p. 20503121211034366, 2021. [CrossRef] [Google Scholar]
  • A. Verma, B. Kaur, S. Venugopal, P. Wadhwa, S. Sahu, P. Kaur, D. Kumar, A. Sharma, “Tetrazole: A privileged scaffold for the discovery of anticancer agents,” Chemical Biology & Drug Design, vol. 100, no. 3, 419-42, 2022. [CrossRef] [PubMed] [Google Scholar]
  • N. Dhawan, M. Z. Afzal, and M. Amin, “Immunotherapy in Anal Cancer,” Current Oncology, vol. 30, no. 5, pp. 4538-4550, 2023. [CrossRef] [Google Scholar]
  • L. C. Kidd, S. Chaing, J. Chipollini, A. R. Giuliano, P. E. Spiess, and P. Sharma, “Relationship between human papillomavirus and penile cancer—implications for prevention and treatment,” Translational Andrology and Urology, vol. 6, no. 5, p. 791, 2017. [CrossRef] [PubMed] [Google Scholar]
  • B. B. Marco and J. L. G. Heil, “Correction to: Circumcision in childhood and male sexual function: a blessing or a curse?,” International Journal of Impotence Research, vol. 35, no. 5, p. 502, 2023. [CrossRef] [PubMed] [Google Scholar]
  • J. Vanthoor, G. Vos, and M. Albersen, “Penile cancer: potential target for immunotherapy?,” World Journal of Urology, vol. 39, pp. 1405-1411, 2021. [CrossRef] [PubMed] [Google Scholar]
  • J. Chahoud, M. Kohli, and P. E. Spiess, “Management of advanced penile cancer,” in Mayo Clinic Proceedings, 2021, vol. 96, no. 3: Elsevier, pp. 720-732. [Google Scholar]
  • G. Coba and T. Patel, “Penile cancer: managing sexual dysfunction and improving quality of life after therapy,” Current urology reports, vol. 22, pp. 1-9, 2021. [CrossRef] [Google Scholar]
  • T. R. Buchanan, W. S. Graybill, and J. Y. Pierce, “Morbidity and mortality of vulvar and vaginal cancers: Impact of 2-, 4-, and 9-valent HPV vaccines,” Human Vaccines & Immunotherapeutics, vol. 12, no. 6, pp. 1352-1356, 2016. [CrossRef] [PubMed] [Google Scholar]
  • J. D. Quinlan, “Human papillomavirus: screening, testing, and prevention,” American family physician, vol. 104, no. 2, pp. 152-159, 2021. [PubMed] [Google Scholar]
  • V. Di Donato et al., “Vulvo-vaginal reconstruction after radical excision for treatment of vulvar cancer: Evaluation of feasibility and morbidity of different surgical techniques,” Surgical oncology, vol. 26, no. 4, pp. 511-521, 2017. [CrossRef] [PubMed] [Google Scholar]
  • A. Jhingran, “Updates in the treatment of vaginal cancer,” International Journal of Gynecologic Cancer, vol. 32, no. 3, 2022. [Google Scholar]
  • R. Berardi et al., “Benefits and limitations of a multidisciplinary approach in cancer patient management,” Cancer Management and Research, pp. 9363-9374, 2020. [Google Scholar]
  • A. Pulumati, A. Pulumati, B. S. Dwarakanath, A. Verma, and R. V. Papineni, “Technological advancements in cancer diagnostics: Improvements and limitations,” Cancer Reports, vol. 6, no. 2, p. e1764, 2023. [CrossRef] [Google Scholar]
  • L. Luria and G. Cardoza-Favarato, “Human papillomavirus,” 2017. [Google Scholar]
  • C. Gilham, A. Sargent, H. C. Kitchener, and J. Peto, “HPV testing compared with routine cytology in cervical screening: long-term follow-up of ARTISTIC RCT,” Health Technology Assessment (Winchester, England), vol. 23, no. 28, p. 1, 2019. [CrossRef] [Google Scholar]
  • L. Ntuli, A. Mtshali, G. Mzobe, L. J. Liebenberg, and S. Ngcapu, “Role of immunity and vaginal microbiome in clearance and persistence of human papillomavirus infection,” Frontiers in cellular and infection microbiology, p. 952, 2022. [Google Scholar]
  • R. Wakabayashi, Y. Nakahama, V. Nguyen, and J. L. Espinoza, “The host-microbe interplay in human papillomavirus-induced carcinogenesis,” Microorganisms, vol. 7, no. 7, p. 199, 2019. [CrossRef] [PubMed] [Google Scholar]
  • S. Zhen, R. Qiang, J. Lu, X. Tuo, X. Yang, and X. Li, “CRISPR/Cas9‐HPV‐liposome enhances antitumor immunity and treatment of HPV infection‐associated cervical cancer,” Journal of medical virology, vol. 95, no. 1, p. e28144, 2023. [CrossRef] [PubMed] [Google Scholar]
  • P. R. Prabhu, J. J. Carter, and D. A. Galloway, “B cell responses upon human papillomavirus (HPV) infection and vaccination,” Vaccines, vol. 10, no. 6, p. 837, 2022. [CrossRef] [PubMed] [Google Scholar]
  • N. Maskey et al., “Infiltrating CD4 and CD8 lymphocytes in HPV infected uterine cervical milieu,” Cancer management and research, pp. 7647-7655, 2019. [Google Scholar]
  • Singh, S., Kumar, V., Romero, R., Sharma, K. and Singh, J., 2019. Applications of nanoparticles in wastewater treatment. Nanobiotechnology in bioformulations, pp.395-418. [Google Scholar]
  • Chong, L., Ramakrishna, S. and Singh, S., 2018. A review of digital manufacturing-based hybrid additive manufacturing processes. The International Journal of Advanced Manufacturing Technology, 95, pp.2281-2300. [CrossRef] [Google Scholar]
  • Kumar, D., Agarwal, G., Tripathi, B., Vyas, D. and Kulshrestha, V., 2009. Characterization of PbS nanoparticles synthesized by chemical bath deposition. Journal of Alloys and Compounds, 484(1-2), pp.463-466. [CrossRef] [Google Scholar]
  • Singh, P.S., Singh, T. and Kaur, P., 2008. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Annals of Nuclear Energy, 35(6), pp.1093-1097. [CrossRef] [Google Scholar]
  • Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., Dalton, B.E., Duprey, J., Cruz, J.A., Hagins, H. and Lindstedt, P.A., 2023. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.