Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/bioconf/20248601030 | |
Published online | 12 January 2024 |
Exploring the Pharmacological Potential of Naringenin and its Nanoparticles: A Review on Bioavailability and Solubility Enhancement Strategies
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab - 144411.
* Corresponding author: ankityadav208@gmail.com
Citrus fruits are rich in differentflavonoid compounds. One of them is naringenin, which exhibits a huge variety of pharmacological benefits such as anti-inflammatory, antioxidant, anticancer, and cardioprotective properties. Butpoor bioavailability and solubility are the main reason for its limited clinical application. To overcome these limitations, several strategies, including complexation, formulation, and nanotechnology-based approaches, have been developed to boost its solubility and bioavailability.Among these approaches, nanoparticle-based delivery systems have shown remarkable potential in improving the therapeutic efficacy of naringenin. This review is based on the recent advances in the development of naringenin nanoparticles and their incorporation into drug delivery systems. We discuss over the numerous methods used to make naringenin more soluble and bioavailable, such as complexing it with cyclodextrins, combining it with lipids and surfactants, and adding it to polymeric nanoparticles. We also highlight the In-vivo and In-vitro studies conducted to check the efficacy of naringenin nanoparticles in various disease models. Finally, we conclude that the development of naringenin nanoparticles and their incorporation into drug delivery systems can be a promising strategy for the efficient delivery of naringenin, ultimately leading to improved health outcomes.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.