Open Access
Issue
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01038
Number of page(s) 7
DOI https://doi.org/10.1051/bioconf/20248601038
Published online 12 January 2024
  • Wang S, Cai Y. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. BiochimicaetBiophysicaActa (BBA)-Molecular Basis of Disease. 2018 Jun 1;1864(6):2218-27. [CrossRef] [Google Scholar]
  • Koh YC, Ho CT, Pan MH. Recentadvances in cancer chemoprevention with phytochemicals. journal of food and drug analysis. 2020 Jan 1;28(1):14-37. [CrossRef] [PubMed] [Google Scholar]
  • Elflein J. Cancer - Statistics & Facts. 2020; https://www.statista.com/topics/1192/cancer-in-the-us/ (accessed on 2020 Aug 27). [Google Scholar]
  • Ramroach S, John M, Joshi A. Lung cancer type classification using differentiator genes. Gene Reports. 2020 Jun 1;19:100647. [CrossRef] [Google Scholar]
  • Elflein J. Cancer death rate worldwide by type of cancer in 2018. 2019; https://www.statista.com/statistics/1031260/cancer-death-rate-worldwide-by-type/ (accessed on 2020 Aug 27). [Google Scholar]
  • Venkataramana L, Jacob SG, Saraswathi S, Prasad DV. Identification of common and dissimilar biomarkers for different cancer types from gene expressions of RNA-sequencing data. Gene Reports. 2020 Mar 18; https://doi.org/10.1016/j.genrep.2020.100654 [Google Scholar]
  • Bhowmick SS, Bhattacharjee D, Rato L. Integrated analysis of the miRNA–mRNA next-generation sequencing data for finding their associations in different cancer types. Computational Biology and Chemistry. 2020 Feb 1;84:107152. [CrossRef] [PubMed] [Google Scholar]
  • Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell biochemistry and function. 2019 Jan;37(1):21-30. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. ActaPharmaceuticaSinica B. 2020 Feb 1;10(2):207-38. [Google Scholar]
  • Toure M, Crews CM. Small‐molecule PROTACS: new approaches to protein degradation. AngewandteChemie International Edition. 2016 Feb 5;55(6):1966-73. [CrossRef] [PubMed] [Google Scholar]
  • Yang CY, Qin C, Bai L, Wang S. Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins—A review. Drug Discovery Today: Technologies. 2019 Apr 1;31:43-51. [CrossRef] [Google Scholar]
  • Xi M, Chen Y, Yang H, Xu H, Du K, Wu C, Xu Y, Deng L, Luo X, Yu L, Wu Y. Small molecule PROTACs in targeted therapy: an emerging strategy to induce protein degradation. European Journal of Medicinal Chemistry. 2019 Jul 15;174:159-80. [CrossRef] [PubMed] [Google Scholar]
  • Carmony KC, Kim KB. PROTAC-induced proteolytictargeting.InUbiquitin Family Modifiers and the Proteasome 2012. Humana Press.doi:10.1007/978-1-61779-474-2_44. [Google Scholar]
  • Hu B, Zhou Y, Sun D, Yang Y, Liu Y, Li X, Li H, Chen L. PROTACs: New Method to Degrade Transcription Regulating Proteins. European Journal of Medicinal Chemistry. 2020 Aug 15; https://doi.org/10.1016/j.ejmech.2020.112698 [Google Scholar]
  • Zhou X, Dong R, Zhang JY, Zheng X, Sun LP. PROTAC: A promising technology for cancer treatment. European Journal of Medicinal Chemistry. 2020 Jul 15; https://doi.org/10.1016/j.ejmech.2020.112539 [Google Scholar]
  • An S, Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct 1;36:553-62. [CrossRef] [PubMed] [Google Scholar]
  • Liu J, Ma J, Liu Y, Xia J, Li Y, Wang ZP, Wei W. PROTACs: A novel strategy for cancer therapy. InSeminars in Cancer Biology 2020 Feb 11. Academic Press.https://doi.org/10.1016/j.semcancer.2020.02.006 [Google Scholar]
  • Pervaiz M, Mishra P, Günther S. Bromodomains: Promising Targets for Drug Discovery. Epigenetic Drug Discovery. 2019 Feb 11:347-81. [Google Scholar]
  • Basheer F, Huntly BJ. BET bromodomain inhibitors in leukemia. Experimental hematology. 2015 Aug 1;43(8):718-31. [CrossRef] [PubMed] [Google Scholar]
  • Barbieri I, Cannizzaro E, Dawson MA. Bromodomains as therapeutic targets in cancer. Briefings in functional genomics. 2013 May 1;12(3):219-30. [CrossRef] [PubMed] [Google Scholar]
  • Jung M, Gelato KA, Fernández-Montalván A, Siegel S, Haendler B. Targeting BET bromodomains for cancer treatment. Epigenomics. 2015 Jun;7(3):487-501. [CrossRef] [PubMed] [Google Scholar]
  • Filippakopoulos P, Knapp S. Next-generation epigenetic inhibitors. Science. 2020 Apr 24;368(6489):367-8. [CrossRef] [PubMed] [Google Scholar]
  • Kiberstis PA. Bromodomain inhibitors revisited. 2020. https://science.sciencemag.org/content/368/6489/381.13?intcmp=trendmd-sci (accessed on 2020 Aug 26). [Google Scholar]
  • Slavish PJ, Chi L, Yun MK, Tsurkan L, Martinez NE, Jonchere B, Chai SC, Connelly M, Waddell MB, Das S, Neale G. Bromodomain-selective BET inhibitors are potent antitumor agents against MYC-driven pediatric cancer. Cancer Research. 2020 Jan 1.DOI: 10.1158/0008-5472.CAN-19-3934 [Google Scholar]
  • Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Molecular cancer. 2018 Dec 1;17(1):164. [CrossRef] [PubMed] [Google Scholar]
  • Yin M, Guo Y, Hu R, Cai WL, Li Y, Pei S, Sun H, Peng C, Li J, Ye R, Yang Q. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nature communications. 2020 Apr 14;11(1):1-4. [Google Scholar]
  • Zhang F, Wu Z, Chen P, Zhang J, Wang T, Zhou J, Zhang H. Discovery of a new class of PROTAC BRD4 degraders based on a dihydroquinazolinone derivative and lenalidomide/pomalidomide. Bioorganic & Medicinal Chemistry. 2020 Jan 1;28(1):115228. [Google Scholar]
  • Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, Lin M, Liu L, Yang CY, Zhao Y, McEachern D. Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. Journal of medicinal chemistry. 2018 Jan 25;61(2):462-81. [CrossRef] [PubMed] [Google Scholar]
  • Jiang F, Wei Q, Li H, Li H, Cui Y, Ma Y, Chen H, Cao P, Lu T, Chen Y. Discovery of novel small molecule induced selective degradation of the bromodomain and extra-terminal (BET) bromodomain protein BRD4 and BRD2 with cellular potencies. Bioorganic & Medicinal Chemistry. 2020 Jan 1;28(1):115181. [CrossRef] [PubMed] [Google Scholar]
  • Gu S, Cui D, Chen X, Xiong X, Zhao Y. PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays. 2018 Apr;40(4):1700247. [CrossRef] [Google Scholar]
  • Massé A, Roulin L, Pasanisi J, Penneroux J, Gachet S, Delord M, Ali A, Alberdi A, Berrou J, Passet M, Hernandez L. BET inhibitors impair leukemic stem cell function only in defined oncogenic subgroups of acute myeloid leukaemias. Leukemia research. 2019 Dec 1;87:106269. [CrossRef] [PubMed] [Google Scholar]
  • Zhang S, Zhao Y, Heaster TM, Fischer MA, Stengel KR, Zhou X, Ramsey H, Zhou MM, Savona MR, Skala MC, Hiebert SW. BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. Journal of Cellular Biochemistry. 2019 May;120(5):7309-22. [CrossRef] [PubMed] [Google Scholar]
  • Coudé MM, Braun T, Berrou J, Dupont M, Bertrand S, Masse A, Raffoux E, Itzykson R, Delord M, Riveiro ME, Herait P. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015 Jul 10;6(19):17698. [CrossRef] [PubMed] [Google Scholar]
  • National Center for Biotechnology Information (2020).PubChem Compound Summary for CID 9936746, Birabresib.https://pubchem.ncbi.nlm.nih.gov/compound/Birabresib(accessed on 2020 August 30). [Google Scholar]
  • Balaji N, Chinnapattu M, Dixit A, Sahu P, PS S, Mullangi R. Validation of an enantioselective LC–MS/MS method to quantify enantiomers of (±)‐OTX015 in mice plasma: Lack of in vivo inversion of (−)‐OTX015 to its antipode. Biomedical Chromatography. 2017 Apr;31(4):e3853. [CrossRef] [Google Scholar]
  • Vázquez R, Licandro SA, Astorgues‐Xerri L, Lettera E, Panini N, Romano M, Erba E, Ubezio P, Bello E, Libener R, Orecchia S. Promising in vivo efficacy of the BET bromodomain inhibitor OTX015/MK‐8628 in malignant pleural mesotheliomaxenografts. International Journal of Cancer. 2017 Jan 1;140(1):197-207. [CrossRef] [PubMed] [Google Scholar]
  • Berenguer‐Daizé C, Astorgues‐Xerri L, Odore E, Cayol M, Cvitkovic E, Noel K, Bekradda M, MacKenzie S, Rezai K, Lokiec F, Riveiro ME. OTX015 (MK‐8628), a novel BET inhibitor, displays in vitro and in vivo antitumor effects alone and in combination with conventional therapies in glioblastoma models. International journal of cancer. 2016 Nov 1;139(9):2047-55. [CrossRef] [PubMed] [Google Scholar]
  • Odore E, Lokiec F, Cvitkovic E, Bekradda M, Herait P, Bourdel F, Kahatt C, Raffoux E, Stathis A, Thieblemont C, Quesnel B. Phase I population pharmacokinetic assessment of the oral bromodomain inhibitor OTX015 in patients with haematologic malignancies. Clinical pharmacokinetics. 2016 Mar 1;55(3):397-405. [CrossRef] [PubMed] [Google Scholar]
  • Herait P, Dombret H, Thieblemont C, Facon T, Stathis A, Cunningham D, Palumbo A, Vey N, Michallet M, Recher C, Rezai K. O7. 3 BET-bromodomain (BRD) inhibitor OTX015: Final results of the dose-finding part of a phase I study in hematologic malignancies. Annals of Oncology. 2015 Mar 1;doi:10.1093/annonc/mdv085.3 [Google Scholar]
  • Stathis A, Bertoni F. BET proteins as targets for anticancer treatment. Cancer discovery. 2018 Jan 1;8(1):24-36. [CrossRef] [PubMed] [Google Scholar]
  • Merck Acquires OncoEthix, a Privately Held Oncology Company Developing Novel BET Inhibitors for Hematological and Solid Cancers. 2014. https://www.merck.com/news/merck-acquires-oncoethix-a-privately-held-oncology-company-developing-novel-bet-inhibitors-for-hematological-and-solid-cancers/ (accessed on 2020 Aug 26). [Google Scholar]
  • Civenni G, Pedrani S, Allegrini S, Bruccoleri A, Albino D, Pinton S, Garcia-Escudero R, Ouafik LH, Cvitkovic E, Carbone GM, Catapano CV. Targeting prostate cancer stem cells (CSCs) with the novel BET bromodomain (BRD) protein inhibitor OTX015. 2015 Aug. DOI: 10.1158/1538-7445.AM2015-2625 [Google Scholar]
  • Gaudio E, Bernasconi E, Kwee I, Boi M, Bonetti P, Tarantelli C, Rinaldi A, Testoni M, Ponzoni M, Stathis A, Stüssi G. The BET Bromodomain inhibitor OTX015 targets the NFKB, TLR and JAK/STAT pathways and shows pre-clinical activity as single agent and in combination in mature B-cell tumors. 2014 Oct. DOI: 10.1158/1538-7445.AM2014-5528 [Google Scholar]
  • Riveiro ME, Astorgues-Xerri L, Vazquez R, Frapolli R, Kwee I, Rinaldi A, Odore E, Rezai K, Bekradda M, Inghirami G, D’Incalci M. OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non- small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget. 2016 Dec 20;7(51):84675. [CrossRef] [PubMed] [Google Scholar]
  • Lu P, Qu X, Shen Y, Jiang Z, Wang P, Zeng H, Ji H, Deng J, Yang X, Li X, Lu H. The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Scientific reports. 2016 Apr 12;6(1):1-3. [CrossRef] [Google Scholar]
  • Astorgues-Xerri L, Canet-Jourdan C, Bekradda M, Cvitkovic E, Herait P, Raymond E, Riveiro M. 567 OTX015, a BET-bromodomain (BET-BRD) inhibitor, potentiates the in vitro effects of chemotherapy drugs and targeted agents in human leukemic cell lines. European Journal of Cancer. 2014(50):183. [Google Scholar]
  • Vázquez R, Riveiro ME, Astorgues-Xerri L, Odore E, Rezai K, Erba E, Panini N, Rinaldi A, Kwee I, Beltrame L, Bekradda M. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget. 2017 Jan 31;8(5):7598. [CrossRef] [PubMed] [Google Scholar]
  • Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM. Hijacking the E3 ubiquitinligasecereblon to efficiently target BRD4. Chemistry & biology. 2015 Jun 18;22(6):755-63. [CrossRef] [PubMed] [Google Scholar]
  • Phase TA. I, Dose-finding Study of the Bromodomain (Brd) Inhibitor OTX015 in HaematologicalMalignancies.https://clinicaltrials.gov/ct2/show/NCT01713582 (accessed on 2020 Aug 23). [Google Scholar]
  • Massard C, Soria JC, Stathis A, Delord JP, Awada A, Peters S, Lewin J, Bekradda M, Rezai K, Zeng Z, Azher H. A phase Ib trial with MK-8628/OTX015, a small molecule inhibitor of bromodomain (BRD) and extra- terminal (BET) proteins, in patients with selected advanced solid tumors. European Journal of Cancer. 2016 Dec 1;69:S2-3. [CrossRef] [Google Scholar]
  • del Mar Noblejas-López M, Nieto-Jimenez C, Burgos M, Gómez-Juárez M, Montero JC, Esparís-Ogando A, Pandiella A, Galán-Moya EM, Ocaña A. Activity of BET-proteolysis targeting chimeric (PROTAC) compounds in triple negative breast cancer. Journal of Experimental & Clinical Cancer Research. 2019 Dec;38(1):1-9. [PubMed] [Google Scholar]
  • Zhang H, Li G, Zhang Y, Shi J, Yan B, Tang H, Chen S, Zhang J, Wen P, Wang Z, Pang C. Targeting BET Proteins with a PROTAC Molecule Elicits Potent Anticancer Activity in HCC Cells. Frontiers in Oncology. 2020 Jan 14;9:1471 [CrossRef] [PubMed] [Google Scholar]
  • 62 Alharbi, K.S., Fuloria, N.K., Fuloria, S., Rahman, S.B., Al-Malki, W.H., Shaikh, M.A.J., Thangavelu, L., Singh, S.K., Allam, V.S.R.R., Jha, N.K. and Chellappan, D.K., 2021. Nuclear factor-kappa B and its role in inflammatory lung disease. Chemico-biological interactions, 345, p.109568. [CrossRef] [PubMed] [Google Scholar]
  • Parveen Kumar Verma, Amrinder Mehta, Hitesh Vasudev, Vinod kumar, Performance of thermal spray coated metallic materials for bio-implant applications Surface review and letters; https://doi.org/10.1142/S0218625X23400127 [Google Scholar]
  • Sarbjeet Kaushal, Sapna Kumari, Deepa Mudgal, Dheeraj Gupta, and Hitesh Vasudev, “Experimental studies on the surface characteristics of bimetallic joints interface fabricated through microwave irradiation, Surface review and letters; https://doi.org/10.1142/S0218625X23500683 [Google Scholar]
  • Prashar, G., Hitesh Vasudev & Thakur, L. A comprehensive Review on the Hot Corrosion and Erosion Performance of thermal Barrier Coatings. Protection of Metals and Physical Chemistry of Surfaces 59, 461–492 (2023). https://doi.org/10.1134/S2070205122060132 (SCI, IF: 1.1). [CrossRef] [Google Scholar]
  • G. Prashar and H. Vasudev, “A comprehensive review on combating the elevated temperature surface degradation by MCrAlX coatings” Surface review and letters; https://doi.org/10.1142/S0218625X23300095 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.