Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01039 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/bioconf/20248601039 | |
Published online | 12 January 2024 |
- Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, and Walters EE. “Lifetime prevalence and age-of- onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.” Archives of general psychiatry 62(6) (2005): 593-602. [CrossRef] [PubMed] [Google Scholar]
- Firth J, Rosenbaum S, Galletly C, Siddiqi N, Stubbs B, Killackey E, Koyanagi A, and Siskind D. “Protecting physical health in people with mental illness–Authors’ reply.” The Lancet Psychiatry 6(11) (2019): 890-1. [CrossRef] [PubMed] [Google Scholar]
- Ni MY, Yao XI, Leung KS, Yau C, Leung CM, Lun P, Flores FP, Chang WC, Cowling BJ, and Leung GM. “Depression and post-traumatic stress during major social unrest in Hong Kong: a 10-year prospective cohort study.” The Lancet 395(10220) (2020): 273-84. [CrossRef] [Google Scholar]
- Gilman SE, Ni MY, Dunn EC, Breslau J, McLaughlin KA, Smoller JW, and Perlis RH. “Contributions of the social environment to first-onset and recurrent mania.” Molecular psychiatry 20(3) (2015): 329-36. [CrossRef] [PubMed] [Google Scholar]
- Matheson SL, Shepherd AM, Pinchbeck RM, Laurens KR and Carr VJ. “Childhood adversity in schizophrenia: a systematic meta-analysis.” Psychological medicine 43(2) (2-13): 225-38. [Google Scholar]
- Matosin N, Fernandez-Enright F, Frank E, Deng C, Wong J, Huang XF, and Newell KA. “Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics.” Journal of Psychiatry and Neuroscience 39(6) (2014): 407-16. [CrossRef] [PubMed] [Google Scholar]
- McOmish CE, Pavey G, Gibbons A, Hopper S, Udawela M, Scarr E, and Dean B. “Lower [3H] LY341495 binding to mGlu2/3 receptors in the anterior cingulate of subjects with major depressive disorder but not bipolar disorder or schizophrenia.” Journal of affective disorders 190 (2016): 241-8. [CrossRef] [PubMed] [Google Scholar]
- Bullock WM, Cardon K, Bustillo J, Roberts RC, and Perrone-Bizzozero NI. “Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients.” American Journal of Psychiatry 165(12) (2008): 1594-603. [CrossRef] [PubMed] [Google Scholar]
- Feyissa AM, Woolverton WL, Miguel-Hidalgo JJ, Wang Z, Kyle PB, Hasler G, Stockmeier CA, Iyo AH, and Karolewicz B. “Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 34(2) (2010): 279-83. [CrossRef] [Google Scholar]
- Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, and Meador‐Woodruff JH. “Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia.” Synapse 57(3) (2005): 123-31. [CrossRef] [PubMed] [Google Scholar]
- Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, and Karolewicz B. “The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder.” Progress in Neuro-Psychopharmacology and Biological Psychiatry 35(7) (2011): 1774-9. [CrossRef] [Google Scholar]
- Karolewicz B, Cetin M, and Aricioglu F. “Beyond the glutamate N-methyl D-aspartate receptor in major depressive disorder: the mTOR signaling pathway.” KlinikPsikofarmakolojiBülteni-Bulletin of Clinical Psychopharmacology 21(1) (2011): 1-6. [Google Scholar]
- Schoepp DD, Wright RA, Levine LR, Gaydos B, and Potter WZ. “LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress.” Stress 6(3) (2003): 189-97. [CrossRef] [PubMed] [Google Scholar]
- Pratt JA. “The neuroanatomical basis of anxiety.” Pharmacology & therapeutics 55(2) (1992): 149-81. https://doi.org/10.1016/0163-7258(92)90014-Q. [CrossRef] [PubMed] [Google Scholar]
- Davis M, Rainnie D, and Cassell M. “Neurotransmission in the rat amygdala related to fear and anxiety.” Trends in neurosciences 17(5) (1994): 208-14. https://doi.org/10.1016/0166-2236(94)90106-6. [CrossRef] [PubMed] [Google Scholar]
- Sangkuhl K, Klein T, and Altman R. “Selective serotonin reuptake inhibitors (SSRI) pathway.” Pharmacogenetics and genomics 19(11) (2009): 907. https://doi:10.1097/FPC.0b013e32833132cb. [CrossRef] [PubMed] [Google Scholar]
- Jayamohananan H, Kumar MK, and Aneesh TP. “5-HIAA as a potential biological marker for neurological and psychiatric disorders.” Advanced pharmaceutical bulletin 9(3) (2019): 374. https://doi:10.15171/apb.2019.044. [CrossRef] [PubMed] [Google Scholar]
- Lo YC, Lin CL, Fang WY, Lőrinczi B, Szatmári I, Chang WH, Fülöp F, and Wu SN. “Effective activation by kynurenic acid and its aminoalkylated derivatives on M-type K+ current.” International journal of molecular sciences 22(3) (2021): 1300. [CrossRef] [PubMed] [Google Scholar]
- Sathyasaikumar KV, Notarangelo FM, Kelly DL, Rowland LM, Hare SM, Chen S, Mo C, Buchanan RW, and Schwarcz R. “Tryptophan challenge in healthy controls and people with schizophrenia: acute effects on plasma levels of kynurenine, kynurenic acid and 5-hydroxyindoleacetic acid.” Pharmaceuticals 15(8) (2022): 1003. [CrossRef] [PubMed] [Google Scholar]
- Stone TW. “Relationships and interactions between ionotropic glutamate receptors and nicotinic receptors in the CNS.” Neuroscience 468 (2021): 321-365. [CrossRef] [PubMed] [Google Scholar]
- Nater UM, and Rohleder N. “Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research.” Psychoneuroendocrinology 34(4) (2009): 486-96. [CrossRef] [PubMed] [Google Scholar]
- Kaur R, Sood A, Lang DK, Goyal R, and Saini B. “Prospecting the intricate role of novel and potent biomarkers in schizophrenia.” Current Topics in Medicinal Chemistry 21(16) (2021): 1441-56. [CrossRef] [PubMed] [Google Scholar]
- Zakowski JJ, and Bruns DE. “Biochemistry of human alpha amylase isoenzymes.” CRC Critical reviews in clinical laboratory sciences 21(4) (1985): 283-322. https://doi.org/10.3109/10408368509165786. [CrossRef] [Google Scholar]
- Brayer GD, Luo Y, and Withers SG. “The structure of human pancreatic α‐amylase at 1.8 Å resolution and comparisons with related enzymes.” Protein Science 4(9) (1995): 1730-42. [CrossRef] [PubMed] [Google Scholar]
- Kandra L. “α-Amylases of medical and industrial importance.” Journal of Molecular Structure: THEOCHEM 666 (2003): 487-98. https://doi.org/10.1016/j.theochem.2003.08.073. [CrossRef] [Google Scholar]
- Tangphatsornruang S, Naconsie M, Thammarongtham C, and Narangajavana J. “Isolation and characterization of an α-amylase gene in cassava (Manihot esculenta).” Plant Physiology and Biochemistry 43(9) (2005): 821-7. [Google Scholar]
- Iulek J, Franco OL, Silva M, Slivinski CT, Bloch Jr C, Rigden DJ, and de Sá MF. “Purification, biochemical characterisation and partial primary structure of a new α-amylase inhibitor from Secale cereale (rye).” The international journal of biochemistry & cell biology 32(11-12) (2000): 1195-204. [CrossRef] [PubMed] [Google Scholar]
- Whitcomb DC, and Lowe ME. “Human pancreatic digestive enzymes.” Digestive diseases and sciences 52 (2007): 1-7. [CrossRef] [PubMed] [Google Scholar]
- Ali N, and Nater UM. “Salivary alpha-amylase as a biomarker of stress in behavioral medicine.” International journal of behavioral medicine 27 (2020): 337-42. [CrossRef] [PubMed] [Google Scholar]
- Gilman SC. “Human parotid gland alpha-amylase secretion as a function of chronic hyperbaric exposure.” Naval Submarine Medical Research Laboratory (1979). [Google Scholar]
- Chatterton Jr RT, Vogelsong KM, Lu YC, Ellman AB, and Hudgens GA. “Salivary α‐amylase as a measure of endogenous adrenergic activity.” Clinical physiology 16(4) (1996): 433-48. [CrossRef] [PubMed] [Google Scholar]
- Bosch JA, Brand HS, Ligtenberg TJ, Bermond B, Hoogstraten J, and Amerongen AV. “Psychological stress as a determinant of protein levels and salivary-induced aggregation of Streptococcus gordonii in human whole saliva.” Psychosomatic medicine 58(4) (1996): 374-82. [CrossRef] [PubMed] [Google Scholar]
- Nater UM, Rohleder N, Gaab J, Berger S, Jud A, Kirschbaum C, and Ehlert U. “Human salivary alpha- amylase reactivity in a psychosocial stress paradigm.” International Journal of Psychophysiology 55(3) (2005): 333-42. [CrossRef] [PubMed] [Google Scholar]
- Byman E, Schultz N, Netherlands Brain Bank, Fex M, and Wennström M. “Brain alpha‐amylase: a novel energy regulator important in Alzheimer disease?.” Brain Pathology 28(6) (2018): 920-32. [CrossRef] [PubMed] [Google Scholar]
- Herman JP, and Cullinan WE. “Neurocircuitry of stress: central control of the hypothalamo–pituitary– adrenocortical axis.” Trends in neurosciences 20(2) (1997): 78-84. [CrossRef] [PubMed] [Google Scholar]
- Kim H, Somerville LH, Johnstone T, Alexander AL, and Whalen PJ. “Inverse amygdala and medial prefrontal cortex responses to surprised faces.” Neuroreport 4(18) (2003): 2317-22. [CrossRef] [PubMed] [Google Scholar]
- Murty VP, LaBar KS, and Adcock RA. “Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.” Journal of Neuroscience 32(26) (2012): 8969-76. [CrossRef] [PubMed] [Google Scholar]
- Kalin NH, Shelton SE, and Davidson RJ. “The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate.” Journal of Neuroscience 24(24) (2004): 5506-15. [CrossRef] [PubMed] [Google Scholar]
- Ressler KJ. “Amygdala activity, fear, and anxiety: modulation by stress.’ Biological psychiatry 67(12) (2010): 1117-9. https://doi.org/10.1016/j.biopsych.2010.04.027. [CrossRef] [PubMed] [Google Scholar]
- Burke HM, Davis MC, Otte C, and Mohr DC. “Depression and cortisol responses to psychological stress: a meta-analysis.” Psychoneuroendocrinology 30(9) (2005): 846-56. [CrossRef] [PubMed] [Google Scholar]
- Etkin A, and Wager TD. “Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.” American journal of Psychiatry 164(10) (2007): 1476-88. [CrossRef] [PubMed] [Google Scholar]
- Espejo EP, Hammen C, and Brennan PA. “Elevated appraisals of the negative impact of naturally occurring life events: A risk factor for depressive and anxiety disorders.” Journal of Abnormal Child Psychology 40 (2012): 303-15. [CrossRef] [PubMed] [Google Scholar]
- Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, Mathews J, and Sheline YI. “Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression.” Biological psychiatry 63(4) (2008): 377-84. [CrossRef] [PubMed] [Google Scholar]
- Hamilton JP, and Gotlib IH. “Neural substrates of increased memory sensitivity for negative stimuli in major depression.” Biological psychiatry 63(12) (2008): 1155-62. [CrossRef] [PubMed] [Google Scholar]
- Groenewold NA, Opmeer EM, de Jonge P, Aleman A, and Costafreda SG. “Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies.” Neuroscience & Biobehavioral Reviews 37(2) (2013): 152-63. [CrossRef] [Google Scholar]
- Roberts AG, and Lopez-Duran NL. “Developmental influences on stress response systems: Implications for psychopathology vulnerability in adolescence.” Comprehensive psychiatry 88 (2019): 9-21. [CrossRef] [PubMed] [Google Scholar]
- Yamamoto T, Toki S, Siegle GJ, Takamura M, Takaishi Y, Yoshimura S, Okada G, Matsumoto T, Nakao T, Muranaka H, and Kaseda Y. “Increased amygdala reactivity following early life stress: a potential resilience enhancer role.” BMC psychiatry 17(1) (2017): 1-1. [CrossRef] [PubMed] [Google Scholar]
- Bowen DM, Allen SJ, Benton JS, Goodhardt MJ, Haan EA, Palmer AM, Sims NR, Smith CC, Spillane JA, Esiri MM, and Neary D. “Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease.” Journal of neurochemistry 41(1) (1983): 266-72. [CrossRef] [PubMed] [Google Scholar]
- Brockway DF, and Crowley NA. “Turning the′ Tides on neuropsychiatric diseases: the role of peptides in the prefrontal cortex.” Frontiers in Behavioral Neuroscience 14 (2020): 588400. [CrossRef] [PubMed] [Google Scholar]
- Grove KL, Campbell RE, Cowley MA, and Smith MS. “Neuropeptide Y Y5 receptor protein in the cortical/limbic system and brainstem of the rat: expression on γ-aminobutyric acid and corticotropin-releasing hormone neurons.” Neuroscience 100(4) (2000): 731-40. [CrossRef] [PubMed] [Google Scholar]
- Morgan III CA, Rasmusson AM, Wang S, Hoyt G, Hauger RL, and Hazlett G. “Neuropeptide-Y, cortisol, and subjective distress in humans exposed to acute stress: replication and extension of previous report.” Biological psychiatry 52(2) (2002): 136-42. [CrossRef] [PubMed] [Google Scholar]
- Hashimoto H, Onishi H, Koide S, Toshihiro K, and Yamagami S. “Plasma neuropeptide Y in patients with major depressive disorder.” Neuroscience letters 216(1) (1996): 57-60. [CrossRef] [PubMed] [Google Scholar]
- Kim BK, Fonda JR, Hauger RL, Pinna G, Anderson GM, Valovski IT, and Rasmusson AM. “Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD.” Neurobiology of Stress 12 (2020): 100220. [CrossRef] [PubMed] [Google Scholar]
- Farzi A, Reichmann F, and Holzer P. “The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour.” Acta Physiologica 213(3) (2015): 603-27. [CrossRef] [PubMed] [Google Scholar]
- Eaton K, Sallee FR, and Sah R. “Relevance of neuropeptide Y (NPY) in psychiatry.” Current topics in medicinal chemistry 7(17) (2007): 1645-59. [CrossRef] [PubMed] [Google Scholar]
- Alberti G, Paladino L, Vitale AM, Caruso Bavisotto C, Conway de Macario E, Campanella C, Macario AJ, and Marino Gammazza A. “Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders.” Applied Sciences 11(2) (2021): 736. [CrossRef] [Google Scholar]
- Hecker JG, and McGarvey M. “Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair.” Cell Stress and Chaperones 16 (2011): 119-31. [CrossRef] [Google Scholar]
- Lindquist S. “The heat-shock response.” Annual review of biochemistry 55(1) (1986): 1151-91. [CrossRef] [PubMed] [Google Scholar]
- Li Z, Menoret A, and Srivastava P. “Roles of heat-shock proteins in antigen presentation and cross-presentation.” Current opinion in immunology 14(1) (2002): 45-51. [CrossRef] [PubMed] [Google Scholar]
- Srivastava P. “Roles of heat-shock proteins in innate and adaptive immunity.” Nature reviews immunology 2(3) (2002): 185-94. [CrossRef] [PubMed] [Google Scholar]
- Li Z, and Srivastava P. “Heat‐shock proteins.” Current protocols in immunology 58(1) (2003): A-1T. [Google Scholar]
- Rao NS, Rao PS, Reddy GV, Nagamani M, Vidyasagar G, and Satyanarayana NL. “Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India.” Environmental monitoring and assessment 184(8) (2012): 5189-214. https://doi.org/10.1007/s10661-011-2333-y. [CrossRef] [PubMed] [Google Scholar]
- Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prévost MC, Alzari PM, and Kroemer G. “Mitochondrial release of caspase-2 and-9 during the apoptotic process.” The Journal of experimental medicine. 189(2) (1999): 381-94. https://doi.org/10.1084/jem.189.2.381. [CrossRef] [PubMed] [Google Scholar]
- Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA, and Steinberg GK. “Gene transfer of HSP72 protects cornuammonis 1 region of the hippocampus neurons from global ischemia: Influence of Bcl‐2.” Annals of neurology 52(2) (2002): 160-7. https://doi.org/10.1002/ana.10264. [CrossRef] [PubMed] [Google Scholar]
- Cheng Y, Li Z, He S, Tian Y, He F, and Li W. “Elevated heat shock proteins in bipolar disorder patients with hypothalamic pituitary adrenal axis dysfunction.” Medicine 97(27) (2018). https://doi.org/10.1097%2FMD.0000000000011089. [Google Scholar]
- Barnes PJ, and Karin M. “Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases.” New England journal of medicine 336(15) (1997): 1066-71. https://doi:10.1056/NEJM199704103361506. [CrossRef] [PubMed] [Google Scholar]
- Baldwin Jr AS. “The NF-κB and IκB proteins: new discoveries and insights.” Annual review of immunology 14(1) (1996): 649-81. https://doi.org/10.1146/annurev.immunol.14.1.649. [CrossRef] [PubMed] [Google Scholar]
- Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, and Sharp FR. “Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling.” Genes & development 18(12) (2004): 1466-81. https://doi:10.1101/gad.1188204Genes&Dev.2004.18:1466-1481. [CrossRef] [PubMed] [Google Scholar]
- Frankenhaeuser M, Lundberg U, Fredrikson M, Melin B, Tuomisto M, Myrsten AL, Hedman M, Bergman‐Losman B, and Wallin L. “Stress on and off the job as related to sex and occupational status in white‐collar workers.” Journal of Organizational Behavior 10(4) (1989) :321-46. https://doi.org/10.1002/job.4030100404. [CrossRef] [Google Scholar]
- Schiepers OJ, Wichers MC, and Maes M. “Cytokines and major depression.” Progress in Neuro- Psychopharmacology and Biological Psychiatry. 29(2) (2005): 201-17. [CrossRef] [Google Scholar]
- Dahl J, Ormstad H, Aass HC, Malt UF, Bendz LT, Sandvik L, Brundin L, and Andreassen OA. “The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery.” Psychoneuroendocrinology 45 (2014): 77-86. [CrossRef] [PubMed] [Google Scholar]
- Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, and Mechawar N. “Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.” Brain, behavior, and immunity 42 (2014): 50-9. [CrossRef] [PubMed] [Google Scholar]
- Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, and Dwork AJ. “Microglia of prefrontal white matter in suicide.” Journal of Neuropathology & Experimental Neurology 73(9) (2014): 880-90. [CrossRef] [PubMed] [Google Scholar]
- Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, Kapczinski F, and Quevedo J. “The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders.” Neuroscience 300 (2015): 141-54. [CrossRef] [PubMed] [Google Scholar]
- Deng SL, Chen JG, and Wang F. “Microglia: a central player in depression.” Current medical science 40(3) (2020): 391-400. [CrossRef] [PubMed] [Google Scholar]
- Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, and Krogh J. “Effect of anti- inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials.” JAMA psychiatry 71(12) (2014): 1381-91. [CrossRef] [PubMed] [Google Scholar]
- Valiati FE, Feiten JG, Géa LP, Silveira Júnior ÉD, Scotton E, Caldieraro MA, Salum GA, and Kauer-Sant’Anna M. “Inflammation and damage-associated molecular patterns in major psychiatric disorders.” Trends in Psychiatry and Psychotherapy 45 (2023): e20220576. [PubMed] [Google Scholar]
- Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, and Reis DJ. “Heat shock protein 70 suppresses astroglial- inducible nitric-oxide synthase expression by decreasing NFκB activation.” Journal of Biological Chemistry 271(30) (1996): 17724-32. [CrossRef] [Google Scholar]
- Van Molle W, Wielockx B, Mahieu T, Takada M, Taniguchi T, Sekikawa K, and Libert C. “HSP70 protects against TNF-induced lethal inflammatory shock.” Immunity 16(5) (2002): 685-95. [CrossRef] [PubMed] [Google Scholar]
- Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, and Hoover DL. “Over-expression of hsp-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages.” Cytokine 16(6) (2001): 210-9. [CrossRef] [PubMed] [Google Scholar]
- Candelario-Jalil E, Yang Y, and Rosenberg GA. “Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia.” Neuroscience 158(3) (2009): 983-94. [CrossRef] [PubMed] [Google Scholar]
- Manaenko A, Fathali N, Chen H, Suzuki H, Williams S, Zhang JH, and Tang J. “Heat shock protein 70 upregulation by geldanamycin reduces brain injury in a mouse model of intracerebral hemorrhage.” Neurochemistry international 57(7) (2010): 844-50. [CrossRef] [PubMed] [Google Scholar]
- Kim N, Kim JY, and Yenari MA. “Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury.” Inflammopharmacology 20 (2012): 177-85. [CrossRef] [PubMed] [Google Scholar]
- Lundberg U, Hansson U, Andersson K, Eneroth P, Frankenhaeuser M, and Hagenfeldt K. “Hirsute women with elevated androgen levels: Psychological characteristics, steroid hormones, and catecholamines.” Journal of Psychosomatic Obstetrics & Gynecology 2(2) (1983): 86-93. https://doi.org/10.3109/01674828309081264. [CrossRef] [Google Scholar]
- Kirschbaum C, and Hellhammer DH. “Salivary cortisol in psychobiological research: an overview.” Neuropsychobiology 22(3) (1989): 150-69. https://doi.org/10.1159/000118611. [CrossRef] [PubMed] [Google Scholar]
- Islam MA, Xu Y, Tao W, Ubellacker JM, Lim M, Aum D, Lee GY, Zhou K, Zope H, Yu M, and Cao W. “Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA.” Nature biomedical engineering 2(11) (2018): 850-64. https://doi.org/10.1038/s41551-018-0284-0. [CrossRef] [PubMed] [Google Scholar]
- Whitehead DL, Perkins-Porras L, Strike PC, Magid K, and Steptoe A. “Cortisol awakening response is elevated in acute coronary syndrome patients with type-D personality.” Journal of psychosomatic research 62(4) (2007): 419-25. [CrossRef] [PubMed] [Google Scholar]
- Noppe G, de Rijke YB, Dorst K, van den Akker EL, and van Rossum EF. “LC‐MS/MS‐based method for long‐term steroid profiling in human scalp hair.” Clinical endocrinology 83(2) (2015): 162-6. [CrossRef] [PubMed] [Google Scholar]
- Gerritsen L, Staufenbiel SM, Penninx BW, van Hemert AM, Noppe G, de Rijke YB, and van Rossum EF. “Long-term glucocorticoid levels measured in hair in patients with depressive and anxiety disorders.” Psychoneuroendocrinology 101 (2019): 246-52. [CrossRef] [PubMed] [Google Scholar]
- Broeks CW, Molenaar N, Brouwer M, van den Akker EL, van Rossum EF, Van R, van den Berg SA, Hillegers M, Hoogendijk WJ, Burger H, and Bockting C. “Intergenerational impact of childhood trauma on hair cortisol concentrations in mothers and their young infants.” Comprehensive Psychoneuroendocrinology 14 (2023): 100167. [CrossRef] [PubMed] [Google Scholar]
- Christensen SM, Varney C, Gupta V, Wenz L, and Bays HE. “Stress, psychiatric disease, and obesity: an obesity medicine association (OMA) clinical practice statement (CPS) 2022.” Obesity Pillars 4 (2022): 100041. [CrossRef] [Google Scholar]
- Ren SY, Sun ZL, and Yang J. “The use of biochemical indexes in hair for clinical studies of psychiatric diseases: What can we learn about mental disease from hair?.” Journal of Psychiatric Research. (2023). [Google Scholar]
- Pragst F, and Balikova MA. “State of the art in hair analysis for detection of drug and alcohol abuse.” Clinicachimica acta 370(1-2) (2006): 17-49. [CrossRef] [Google Scholar]
- Karabatsiakis A, de Punder K, Salinas-Manrique J, Todt M, and Dietrich DE. “Hair cortisol level might be indicative for a 3PM approach towards suicide risk assessment in depression: comparative analysis of mentally stable and depressed individuals versus individuals after completing suicide.” EPMA journal. 13(3) (2022): 383-95. [Google Scholar]
- Lewitzka U, Bauer M, Ripke B, Bronisch T, and Günther L. “Impulsivity and saliva cortisol in patients with suicide attempt and controls.” Neuropsychobiology 75(4) (2018): 162-8. [Google Scholar]
- Genis-Mendoza AD, Dionisio-García DM, Gonzalez-Castro TB, Tovilla-Zaráte CA, Juárez-Rojop IE, López- Narváez ML, Castillo-Avila RG, and Nicolini H. “Increased levels of cortisol in individuals with suicide attempt and its relation with the number of suicide attempts and depression.” Frontiers in psychiatry 13 (2022): 912021. [CrossRef] [PubMed] [Google Scholar]
- Shibuya I, Nagamitsu S, Okamura H, Komatsu H, Ozono S, Yamashita Y, and Matsuishi T. “Changes in salivary cortisol levels as a prognostic predictor in children with anorexia nervosa.” International journal of psychophysiology 82(2) (2011): 196-201. https://doi.org/10.1016/j.ijpsycho.2011.08.008 [CrossRef] [PubMed] [Google Scholar]
- Shibuya I, Nagamitsu S, Okamura H, Ozono S, Chiba H, Ohya T, Yamashita Y, and Matsuishi T. “High correlation between salivary cortisol awakening response and the psychometric profiles of healthy children.” BioPsychoSocial Medicine 8 (2014): 1-4. [CrossRef] [PubMed] [Google Scholar]
- Heuser I, and Lammers CH. “Stress and the brain.” Neurobiology of aging 24 (2003): S69-76. [CrossRef] [PubMed] [Google Scholar]
- Sridhar GR. “Psychiatric co-morbidity & diabetes.” Indian Journal of Medical Research. (2007) [Google Scholar]
- Stalder T, Steudte-Schmiedgen S, Alexander N, Klucken T, Vater A, Wichmann S, Kirschbaum C, and Miller R. “Stress-related and basic determinants of hair cortisol in humans: A meta-analysis.” Psychoneuroendocrinology 77 (2017): 261-74. https://doi.org/10.1016/j.psyneuen.2016.12.017. [CrossRef] [PubMed] [Google Scholar]
- Cooper JR, Bloom FE, and Roth RH. “The biochemical basis of neuropharmacology.” [Google Scholar]
- Spector S, Gordon R, Sjoerdsma A, and Udenfriend S. “End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis.” Molecular Pharmacology 3(6) (1967): 549-55. [PubMed] [Google Scholar]
- Iuvone PM, Galli CL, Garrison-Gund CK, and Neff NH. “Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons.” Science 202(4370) (1978): 901-2. https://doi.org/10.1126/science.30997. [CrossRef] [PubMed] [Google Scholar]
- Itoi K, Ohara S, and Kobayashi K. “Selective Ablation of Dopamine β-Hydroxylase Neurons in the Brain by Immunotoxin-Mediated Neuronal Targeting: New Insights into Brain Catecholaminergic Circuitry and Catecholamine-Related Diseases.” Advances in Pharmacology 68 (2013): 155-66. https://doi.org/10.1016/B978-0-12-411512-5.00008-7. [CrossRef] [PubMed] [Google Scholar]
- James GD, and Brown DE. “The biological stress response and lifestyle: catecholamines and blood pressure.” Annual Review of Anthropology 26(1) (1997): 313-35. [CrossRef] [Google Scholar]
- Johnson DG, Hayward JS, Jacobs TP, Collis ML, Eckerson JD, and Williams RH. “Plasma norepinephrine responses of man in cold water.” Journal of Applied Physiology 43(2) (1997): 216-20. [Google Scholar]
- Vigas M, Kvetnansky R, Jurcovicova J, Jezova D, and Tatar P. “Comparison of catecholamine and adenopituitary hormone responses to various stress stimuli in man. Stress: The Role of Catecholamines and Other Neurotransmitters, E Usdin, R Kvetnansky, J Axelrod (eds).” New York, Gordon and Breach Science Publishers. (1984): 865-82. [Google Scholar]
- Gorman AJ, and Proppe DW. “Mechanisms producing tachycardia in conscious baboons during environmental heat stress.” Journal of applied physiology 56(2) (1984): 441-6. [CrossRef] [Google Scholar]
- Hoon RS, Sharma SC, Balasubramanian V, Chadha KS, and Mathew OP. “Urinary catecholamine excretion on acute induction to high altitide (3,658 m).” Journal of Applied Physiology 41(5) (1976): 631-3. [CrossRef] [Google Scholar]
- Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM, Sutton JR, Wolfel EE, and Reeves JT. “Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure.” American Journal of Physiology-Endocrinology and Metabolism 261(4) (1991): E419-24. [CrossRef] [Google Scholar]
- Sharma VK, and Singh TG. “Chronic stress and diabetes mellitus: interwoven pathologies.” Current diabetes reviews 16(6) (2020): 546-56. https://doi.org/10.2174/1573399815666191111152248 [PubMed] [Google Scholar]
- Portelius E, Olsson B, Höglund K, Cullen NC, Kvartsberg H, Andreasson U, Zetterberg H, Sandelius Å, Shaw LM, Lee VM, and Irwin DJ. “Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology.” Acta neuropathological 136 (2018): 363-76. [CrossRef] [PubMed] [Google Scholar]
- Henjum K, Watne LO, Godang K, Halaas NB, Eldholm RS, Blennow K, Zetterberg H, Saltvedt I, Bollerslev J, and Knapskog AB. “Cerebrospinal fluid catecholamines in Alzheimer’s disease patients with and without biological disease.” Translational psychiatry 12(1) (2022): 151. [CrossRef] [PubMed] [Google Scholar]
- Mathew RJ, Ho BT, Kralik P, Taylor D, Semchuk K, Weinman M, and Claghorn JL. “Catechol-O- methyltransferase and catecholamines in anxiety and relaxation.” Psychiatry Research 3(1) (1980): 85-91. [CrossRef] [PubMed] [Google Scholar]
- Nasution AH, and Lelo A. “Catechol-o-methyltransferase (comt) enzyme levels in patients with preoperative anxiety.” Pharmacology, Medical Reports, Orthopedic, And Illness Details (COMORBID) 1(1) (2022): 33-40. [CrossRef] [Google Scholar]
- 62 Alharbi, K.S., Fuloria, N.K., Fuloria, S., Rahman, S.B., Al-Malki, W.H., Shaikh, M.A.J., Thangavelu, L., Singh, S.K., Allam, V.S.R.R., Jha, N.K. and Chellappan, D.K., 2021. Nuclear factor-kappa B and its role in inflammatory lung disease. Chemico-biological interactions, 345, p.109568. [CrossRef] [PubMed] [Google Scholar]
- Parveen Kumar Verma, Amrinder Mehta, Hitesh Vasudev, Vinod kumar, Performance of thermal spray coated metallic materials for bio-implant applications Surface review and letters; https://doi.org/10.1142/S0218625X23400127 [Google Scholar]
- Sarbjeet Kaushal, Sapna Kumari, Deepa Mudgal, Dheeraj Gupta, and Hitesh Vasudev, “Experimental studies on the surface characteristics of bimetallic joints interface fabricated through microwave irradiation, Surface review and letters; https://doi.org/10.1142/S0218625X23500683 [Google Scholar]
- Prashar, G., Hitesh Vasudev & Thakur, L. A comprehensive Review on the Hot Corrosion and Erosion Performance of thermal Barrier Coatings. Protection of Metals and Physical Chemistry of Surfaces 59, 461–492 (2023). https://doi.org/10.1134/S2070205122060132 (SCI, IF: 1.1). [CrossRef] [Google Scholar]
- G. Prashar and H. Vasudev, “A comprehensive review on combating the elevated temperature surface degradation by MCrAlX coatings” Surface review and letters; https://doi.org/10.1142/S0218625X23300095 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.