Open Access
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
Article Number 01061
Number of page(s) 11
Published online 12 January 2024
  • E. Coronado, T. Kiyokawa, G. A. G. Ricardez, I. G. Ramirez-Alpizar, G. Venture, and N. Yamanobe, “Evaluating quality in human-robot interaction: A systematic search and classification of performance and human-centered factors, measures and metrics towards an industry 5.0,” J Manuf Syst, vol. 63, pp. 392–410, Apr. 2022, doi: 10.1016/j.jmsy.2022.04.007. [CrossRef] [Google Scholar]
  • T. D. Pham, C. Manapragada, N. Rajan, and U. Aickelin, “Pharmaceutical process optimisation: Decision support under high uncertainty,” Comput Chem Eng, vol. 170, Feb. 2023, doi: 10.1016/j.compchemeng.2022.108100. [Google Scholar]
  • B. Gladysz, T. anh Tran, D. Romero, T. van Erp, J. Abonyi, and T. Ruppert, “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0,” J Manuf Syst, vol. 70, pp. 160–185, Oct. 2023, doi: 10.1016/j.jmsy.2023.07.008. [CrossRef] [Google Scholar]
  • C. Zhang, G. Zhou, J. Li, F. Chang, K. Ding, and D. Ma, “A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in Industry 4.0,” J Manuf Syst, vol. 66, pp. 56–70, Feb. 2023, doi: 10.1016/j.jmsy.2022.11.015. [CrossRef] [Google Scholar]
  • S. Liang, J. Yang, and T. Ding, “Performance evaluation of AI driven low carbon manufacturing industry in China: An interactive network DEA approach,” Comput Ind Eng, vol. 170, Aug. 2022, doi: 10.1016/j.cie.2022.108248. [PubMed] [Google Scholar]
  • X. Wang, M. Liu, C. Liu, L. Ling, and X. Zhang, “Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing,” Expert Syst Appl, vol. 234, p. 121136, Dec. 2023, doi: 10.1016/j.eswa.2023.121136. [CrossRef] [Google Scholar]
  • J. Leng et al., “Towards resilience in Industry 5.0: A decentralized autonomous manufacturing paradigm,” J Manuf Syst, vol. 71, pp. 95–114, Dec. 2023, doi: 10.1016/j.jmsy.2023.08.023. [CrossRef] [Google Scholar]
  • B. Wang et al., “Human Digital Twin in the context of Industry 5.0,” Robot Comput Integr Manuf, vol. 85, Feb. 2024, doi: 10.1016/j.rcim.2023.102626. [Google Scholar]
  • Majeed et al., “A big data-driven framework for sustainable and smart additive manufacturing,” Robot Comput Integr Manuf, vol. 67, Feb. 2021, doi: 10.1016/j.rcim.2020.102026. [CrossRef] [Google Scholar]
  • Al-Hindi, M. A. Mohammed, E. Mangantig, and N. D. Martini, “Prevalence of sodium-glucose transporter 2 inhibitor-associated diabetic ketoacidosis in real-world data: A systematic review and meta-analysis,” Journal of the American Pharmacists Association, Oct. 2023, doi: 10.1016/J.JAPH.2023.10.010. [Google Scholar]
  • A. Vallero, “Air pollution decision-making,” Air Pollution Calculations, pp. 569–610, 2024, doi: 10.1016/B978-0-443-13987-1.00010-7. [Google Scholar]
  • N. Meyendorf, N. Ida, R. Singh, and J. Vrana, “NDE 4.0: Progress, promise, and its role to industry 4.0,” NDT and E International, vol. 140, Dec. 2023, doi: 10.1016/j.ndteint.2023.102957. [CrossRef] [Google Scholar]
  • X. Zheng et al., “A data-driven approach to predict the compressive strength of alkali-activated materials and correlation of influencing parameters using SHapley Additive exPlanations (SHAP) analysis,” Journal of Materials Research and Technology, vol. 25, pp. 4074–4093, Jul. 2023, doi: 10.1016/j.jmrt.2023.06.207. [CrossRef] [Google Scholar]
  • J. C. Almeida, B. Ribeiro, and A. Cardoso, “A human-centric approach to aid in assessing maintenance from the sustainable manufacturing perspective,” Procedia Comput Sci, vol. 220, pp. 600–607, 2023, doi: 10.1016/j.procs.2023.03.076. [CrossRef] [Google Scholar]
  • L. D. Makanda, P. Jiang, M. Yang, and H. Shi, “Emergence of collective intelligence in industrial cyber-physical-social systems for collaborative task allocation and defect detection,” Comput Ind, vol. 152, Nov. 2023, doi: 10.1016/j.compind.2023.104006. [CrossRef] [Google Scholar]
  • F. H. Juwono, W. K. Wong, S. Verma, N. Shekhawat, B. A. Lease, and C. Apriono, “Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review,” Artificial Intelligence in Agriculture, Dec. 2023, doi: 10.1016/j.aiia.2023.09.002. [Google Scholar]
  • Han, J. Lu, Y. Hu, and G. Zhang, “Tri-level decision-making with multiple followers: Model, algorithm and case study,” Inf Sci (N Y), vol. 311, pp. 182–204, Aug. 2015, doi: 10.1016/j.ins.2015.03.043. [CrossRef] [Google Scholar]
  • S. Y. Teng, M. Touš, W. D. Leong, B. S. How, H. L. Lam, and V. Máša, “Recent advances on industrial data-driven energy savings: Digital twins and infrastructures,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110208. [Google Scholar]
  • P. Brauner and M. Ziefle, “Beyond playful learning – Serious games for the human-centric digital transformation of production and a design process model,” Technol Soc, vol. 71, Nov. 2022, doi: 10.1016/j.techsoc.2022.102140. [CrossRef] [Google Scholar]
  • Kazmaier and J. H. van Vuuren, “A generic framework for sentiment analysis: Leveraging opinion-bearing data to inform decision making,” Decis Support Syst, vol. 135, Aug. 2020, doi: 10.1016/j.dss.2020.113304. [CrossRef] [Google Scholar]
  • B. K. Mahanta, P. Gupta, I. Mohanty, T. K. Roy, and N. Chakraborti, “Evolutionary data driven modeling and tri-objective optimization for noisy BOF steel making data,” Digital Chemical Engineering, vol. 7, Jun. 2023, doi: 10.1016/j.dche.2023.100094. [CrossRef] [Google Scholar]
  • T. Sturm, L. Pumplun, J. P. Gerlach, M. Kowalczyk, and P. Buxmann, “Machine learning advice in managerial decision-making: The overlooked role of decision makers’ advice utilization,” Journal of Strategic Information Systems, vol. 32, no. 4, Dec. 2023, doi: 10.1016/j.jsis.2023.101790. [CrossRef] [Google Scholar]
  • X. Wang, Y. Pan, M. Li, and J. Chen, “A novel data-driven optimization framework for unsupervised and multivariate early-warning threshold modification in risk assessment of deep excavations,” Expert Syst Appl, vol. 238, Mar. 2024, doi: 10.1016/j.eswa.2023.121872. [Google Scholar]
  • Shruti, S. Rani, and G. Srivastava, “Secure hierarchical fog computing-based architecture for industry 5.0 using an attribute-based encryption scheme,” Expert Syst Appl, vol. 235, Jan. 2024, doi: 10.1016/j.eswa.2023.121180. [CrossRef] [Google Scholar]
  • Schmitt, “Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial Intelligence (AI)-enabled malware and intrusion detection,” J Ind Inf Integr, p. 100520, Dec. 2023, doi: 10.1016/j.jii.2023.100520. [Google Scholar]
  • Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  • Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
  • K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
  • V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  • Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  • K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
  • S. Subramaniam et al., “Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review,” Sustainability (Switzerland), vol. 14, no. 16, Aug. 2022, doi: 10.3390/SU14169951. [Google Scholar]
  • V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
  • S. Bali et al., “A framework to assess the smartphone buying behaviour using DEMATEL method in the Indian context,” Ain Shams Engineering Journal, 2023, doi: 10.1016/J.ASEJ.2023.102129. [Google Scholar]
  • Singh et al., “Comparative Study of Concrete Cylinders Confined Using Natural and Artificial Fibre Reinforced Polymers,” Lecture Notes in Mechanical Engineering, pp. 79–91, 2023, doi: 10.1007/978-981-19-4147-4_8. [Google Scholar]
  • Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  • Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
  • T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” UPRAVLENIE / MANAGEMENT (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
  • Garg, V., Singh, H., Bimbrawh, S., Kumar Singh, S., Gulati, M., Vaidya, Y. and Kaur, P., 2017. Ethosomes and transfersomes: Principles, perspectives and practices. Current drug delivery, 14(5), pp.613-633. [CrossRef] [PubMed] [Google Scholar]
  • Bhatia, A., Singh, B., Raza, K., Wadhwa, S. and Katare, O.P., 2013. Tamoxifen-loaded lecithin organogel (LO) for topical application: development, optimization and characterization. International Journal of Pharmaceutics, 444(1-2), pp.47-59. [CrossRef] [PubMed] [Google Scholar]
  • Elsheikh, A.H., Saba, A.I., Abd Elaziz, M., Lu, S., Shanmugan, S., Muthuramalingam, T., Kumar, R., Mosleh, A.O., Essa, F.A. and Shehabeldeen, T.A., 2021. Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. Process Safety and Environmental Protection, 149, pp.223-233. [CrossRef] [PubMed] [Google Scholar]
  • Singh, M., Rathi, R. and Garza-Reyes, J.A., 2021. Analysis and prioritization of Lean Six Sigma enablers with environmental facets using best worst method: A case of Indian MSMEs. Journal of cleaner production, 279, p.123592. [CrossRef] [Google Scholar]
  • Sharma, A., Sarishma, Tomar, R., Chilamkurti, N. and Kim, B.G., 2020. Blockchain based smart contracts for internet of medical things in e-healthcare. Electronics, 9(10), p.1609. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.