Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01062 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/bioconf/20248601062 | |
Published online | 12 January 2024 |
- T. Ahmad et al., “Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities,” J Clean Prod, vol. 289, Mar. 2021, doi: 10.1016/j.jclepro.2021.125834. [CrossRef] [Google Scholar]
- B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, and T. Freiheit, “Smart Manufacturing and Intelligent Manufacturing: A Comparative Review,” Engineering, vol. 7, no. 6, pp. 738–757, Jun. 2021, doi: 10.1016/j.eng.2020.07.017. [CrossRef] [Google Scholar]
- V. V. Aroulanandam, Satyam, P. Sherubha, K. Lalitha, J. Hymavathi, and R. Thiagarajan, “Sensor data fusion for optimal robotic navigation using regression based on an IOT system,” Measurement: Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100598. [CrossRef] [Google Scholar]
- J. C. Serrano-Ruiz, J. Mula, and R. Poler, “Smart manufacturing scheduling: A literature review,” J Manuf Syst, vol. 61, pp. 265–287, Oct. 2021, doi: 10.1016/j.jmsy.2021.09.011. [CrossRef] [Google Scholar]
- L. Liu, X. Guo, and C. Lee, “Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters,” Nano Energy, vol. 88, Oct. 2021, doi: 10.1016/j.nanoen.2021.106304. [Google Scholar]
- D. Kumar Singh and R. Sobti, “Long-range real-time monitoring strategy for Precision Irrigation in urban and rural farming in society 5.0,” Comput Ind Eng, vol. 167, May 2022, doi: 10.1016/j.cie.2022.107997. [CrossRef] [Google Scholar]
- C. Li, P. Zheng, Y. Yin, B. Wang, and L. Wang, “Deep reinforcement learning in smart manufacturing: A review and prospects,” CIRP J Manuf Sci Technol, vol. 40, pp. 75–101, Feb. 2023, doi: 10.1016/j.cirpj.2022.11.003. [CrossRef] [Google Scholar]
- S. Pandya et al., “Federated learning for smart cities: A comprehensive survey,” Sustainable Energy Technologies and Assessments, vol. 55, Feb. 2023, doi: 10.1016/j.seta.2022.102987. [CrossRef] [Google Scholar]
- S. Rani, A. Kataria, S. Kumar, and P. Tiwari, “Federated learning for secure IoMT- applications in smart healthcare systems: A comprehensive review,” Knowl Based Syst, vol. 274, Aug. 2023, doi: 10.1016/j.knosys.2023.110658. [CrossRef] [Google Scholar]
- J. Leng et al., “Industry 5.0: Prospect and retrospect,” J Manuf Syst, vol. 65, pp. 279–295, Oct. 2022, doi: 10.1016/j.jmsy.2022.09.017. [CrossRef] [Google Scholar]
- R. Javed et al., “Future smart cities requirements, emerging technologies, applications, challenges, and future aspects,” Cities, vol. 129, Oct. 2022, doi: 10.1016/j.cities.2022.103794. [CrossRef] [Google Scholar]
- Y. P. Tsang, T. Yang, Z. S. Chen, C. H. Wu, and K. H. Tan, “How is extended reality bridging human and cyber-physical systems in the IoT-empowered logistics and supply chain management?,” Internet of Things (Netherlands), vol. 20, Nov. 2022, doi: 10.1016/j.iot.2022.100623. [Google Scholar]
- B. Gladysz, T. anh Tran, D. Romero, T. van Erp, J. Abonyi, and T. Ruppert, “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0,” J Manuf Syst, vol. 70, pp. 160–185, Oct. 2023, doi: 10.1016/j.jmsy.2023.07.008. [CrossRef] [Google Scholar]
- J. Perez, F. Siddiqui, S. Zeadally, and D. Lane, “A review of IoT systems to enable independence for the elderly and disabled individuals,” Internet of Things (Netherlands), vol. 21, Apr. 2023, doi: 10.1016/j.iot.2022.100653. [Google Scholar]
- S. K. Baduge et al., “Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications,” Autom Constr, vol. 141, Sep. 2022, doi: 10.1016/j.autcon.2022.104440. [CrossRef] [Google Scholar]
- D. Chawla and P. S. Mehra, “A roadmap from classical cryptography to post-quantum resistant cryptography for 5G-enabled IoT: Challenges, opportunities and solutions,” Internet of Things (Netherlands), vol. 24, Dec. 2023, doi: 10.1016/j.iot.2023.100950. [Google Scholar]
- M. Golovianko, V. Terziyan, V. Branytskyi, and D. Malyk, “Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid,” Procedia Comput Sci, vol. 217, pp. 102–113, 2022, doi: 10.1016/j.procs.2022.12.206. [Google Scholar]
- M. Ertz and F. Gasteau, “Role of smart technologies for implementing industry 4.0 environment in product lifetime extension towards circular economy: A qualitative research,” Heliyon, vol. 9, no. 6, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16762. [CrossRef] [PubMed] [Google Scholar]
- R. Ashima, A. Haleem, S. Bahl, M. Javaid, S. K. Mahla, and S. Singh, “Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0,” Mater Today Proc, vol. 45, pp. 5081–5088, 2021, doi: 10.1016/j.matpr.2021.01.583. [CrossRef] [Google Scholar]
- W. Ochoa, F. Larrinaga, and A. Pérez, “Context-aware workflow management for smart manufacturing: A literature review of semantic web-based approaches,” Future Generation Computer Systems, vol. 145, pp. 38–55, Aug. 2023, doi: 10.1016/j.future.2023.03.017. [CrossRef] [Google Scholar]
- Shruti, S. Rani, and G. Srivastava, “Secure hierarchical fog computing-based architecture for industry 5.0 using an attribute-based encryption scheme,” Expert Syst Appl, vol. 235, Jan. 2024, doi: 10.1016/j.eswa.2023.121180. [CrossRef] [Google Scholar]
- D. Mourtzis, J. Angelopoulos, and N. Panopoulos, “Industry 4.0 and smart manufacturing,” Reference Module in Materials Science and Materials Engineering, 2022, doi: 10.1016/B978-0-323-96020-5.00010-8. [Google Scholar]
- M. H. Zafar et al., “Step towards secure and reliable smart grids in Industry 5.0: A federated learning assisted hybrid deep learning model for electricity theft detection using smart meters,” Energy Reports, vol. 10, pp. 3001–3019, Nov. 2023, doi: 10.1016/j.egyr.2023.09.100. [CrossRef] [Google Scholar]
- M. Kaniappan Chinnathai and B. Alkan, “A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries,” J Clean Prod, vol. 419, Sep. 2023, doi: 10.1016/j.jclepro.2023.138259. [CrossRef] [Google Scholar]
- S. Javed, A. Tripathy, J. van Deventer, H. Mokayed, C. Paniagua, and J. Delsing, “An approach towards demand response optimization at the edge in smart energy systems using local clouds,” Smart Energy, p. 100123, Oct. 2023, doi: 10.1016/J.SEGY.2023.100123. [Google Scholar]
- Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
- Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
- K. Kumar et al., “Understanding Composites and Intermetallic: Microstructure, Properties, and Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01196. [Google Scholar]
- M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
- Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
- V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456-9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
- J. Singh et al., “Computational parametric investigation of solar air heater with dimple roughness in S-shaped pattern,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01392-8. [Google Scholar]
- H. D. Nguyen et al., “A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties,” Journal of Materials Research and Technology, vol. 18, pp. 4641–4661, May 2022, doi: 10.1016/J.JMRT.2022.04.055. [CrossRef] [Google Scholar]
- P. Singh, T. Bishnoi, S. Dixit, K. Kumar, N. Ivanovich Vatin, and J. Singh, “Review on the Mechanical Properties and Performance of Permeable Concrete,” Lecture Notes in Mechanical Engineering, pp. 341–351, 2023, doi: 10.1007/978-981-19-4147-4_35. [Google Scholar]
- G. Murali, S. R. Abid, K. Al-Lami, N. I. Vatin, S. Dixit, and R. Fediuk, “Pure and mixed-mode (I/III) fracture toughness of preplaced aggregate fibrous concrete and slurry infiltrated fibre concrete and hybrid combination comprising nano carbon tubes,” Constr Build Mater, vol. 362, Jan. 2023, doi: 10.1016/J.Conbuildmat.2022.129696. [CrossRef] [Google Scholar]
- K. M. Agarwal et al., “Optimization of die design parameters in ECAP for sustainable manufacturing using response surface methodology,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01365-X. [Google Scholar]
- L. Mishra, S. Dixit, R. Nangia, K. Saurabh, K. Kumar, and K. Sharma, “A brief review on segregation of solid wastes in Indian region,” Mater Today Proc, vol. 69, pp. 419–424, Jan. 2022, doi: 10.1016/J.MATPR.2022.09.070. [CrossRef] [Google Scholar]
- Garg, V., Singh, H., Bimbrawh, S., Kumar Singh, S., Gulati, M., Vaidya, Y. and Kaur, P., 2017. Ethosomes and transfersomes: Principles, perspectives and practices. Current drug delivery, 14(5), pp.613-633. [Google Scholar]
- 70. Bhatia, A., Singh, B., Raza, K., Wadhwa, S. and Katare, O.P., 2013. Tamoxifen- loaded lecithin organogel (LO) for topical application: development, optimization and characterization. International Journal of Pharmaceutics, 444(1-2), pp.47-59. [CrossRef] [PubMed] [Google Scholar]
- 71. Elsheikh, A.H., Saba, A.I., Abd Elaziz, M., Lu, S., Shanmugan, S., Muthuramalingam, T., Kumar, R., Mosleh, A.O., Essa, F.A. and Shehabeldeen, T.A., 2021. Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. Process Safety and Environmental Protection, 149, pp.223-233. [CrossRef] [PubMed] [Google Scholar]
- 72. Singh, M., Rathi, R. and Garza-Reyes, J.A., 2021. Analysis and prioritization of Lean Six Sigma enablers with environmental facets using best worst method: A case of Indian MSMEs. Journal of cleaner production, 279, p.123592. [CrossRef] [Google Scholar]
- 73. Sharma, A., Sarishma, Tomar, R., Chilamkurti, N. and Kim, B.G., 2020. Blockchain based smart contracts for internet of medical things in e-healthcare. Electronics, 9(10), p.1609. [CrossRef] [Google Scholar]
- Singh, M., Rathi, R. and Garza-Reyes, J.A., 2021. Analysis and prioritization of Lean Six Sigma enablers with environmental facets using best worst method: A case of Indian MSMEs. Journal of cleaner production, 279, p.123592. [CrossRef] [Google Scholar]
- Sharma, A., Sarishma, Tomar, R., Chilamkurti, N. and Kim, B.G., 2020. Blockchain based smart contracts for internet of medical things in e-healthcare. Electronics, 9(10), p.1609. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.