Open Access
Issue |
BIO Web Conf.
Volume 86, 2024
International Conference on Recent Trends in Biomedical Sciences (RTBS-2023)
|
|
---|---|---|
Article Number | 01072 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/bioconf/20248601072 | |
Published online | 12 January 2024 |
- S. Abdur Razzak et al., “Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future,” Green Chemical Engineering, Oct. 2023, doi: 10.1016/J.GCE.2023.10.004. [Google Scholar]
- M. E. Mondejar et al., “Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet,” Science of the Total Environment, vol. 794, Nov. 2021, doi: 10.1016/j.scitotenv.2021.148539. [CrossRef] [Google Scholar]
- N. Brown et al., “Big Data in Drug Discovery,” Prog Med Chem, vol. 57, no. 1, pp. 277–356, Jan. 2018, doi: 10.1016/bs.pmch.2017.12.003. [CrossRef] [PubMed] [Google Scholar]
- M. Dadhich and K. K. Hiran, “Empirical investigation of extended TOE model on Corporate Environment Sustainability and dimensions of operating performance of SMEs: A high order PLS-ANN approach,” J Clean Prod, vol. 363, Aug. 2022, doi: 10.1016/j.jclepro.2022.132309. [CrossRef] [Google Scholar]
- R. Abbasi, P. Martinez, and R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0,” Smart Agricultural Technology, vol. 2, Dec. 2022, doi: 10.1016/j.atech.2022.100042. [CrossRef] [Google Scholar]
- “Sustainability Measures: An Experimental Analysis of AI and Big Data Insights in Industry 5.0 - Search | ScienceDirect.com.” Accessed: Oct. 30, 2023. [Online]. Available: https://www.sciencedirect.com/search?qs=Sustainability%20Measures%3A%20An%20Experimental%20Analysis%20of%20AI%20and%20Big%20Data%20Insights%20in%20Industry%205.0 [Google Scholar]
- Y. C. Kim, E. Atukeren, and Y. Lee, “A New Digital Value Chain Model with PLC in Biopharmaceutical Industry: The Implication for Open Innovation,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 2, Jun. 2022, doi: 10.3390/joitmc8020063. [Google Scholar]
- M. Malik, V. K. Gahlawat, R. Mor, K. Rahul, B. P. Singh, and S. Agnihotri, “Industry 4.0 technologies in postharvest operations: current trends and implications,” Postharvest Management of Fresh Produce, pp. 347–368, 2023, doi: 10.1016/B978-0-323-91132-0.00012-5. [Google Scholar]
- S. Tuli et al., “AI augmented Edge and Fog computing: Trends and challenges,” Journal of Network and Computer Applications, vol. 216, Jul. 2023, doi: 10.1016/j.jnca.2023.103648. [CrossRef] [Google Scholar]
- T. Liskiewicz, I. Sherrington, T. Khan, and Y. Liu, “Advances in Sensing for Real-Time Monitoring of Tribological Parameters,” Tribol Int, p. 108965, Nov. 2023, doi: 10.1016/j.triboint.2023.108965. [Google Scholar]
- P. Brauner and M. Ziefle, “Beyond playful learning – Serious games for the human- centric digital transformation of production and a design process model,” Technol Soc, vol. 71, Nov. 2022, doi: 10.1016/j.techsoc.2022.102140. [CrossRef] [Google Scholar]
- K. M. Hanga and Y. Kovalchuk, “Machine learning and multi-agent systems in oil and gas industry applications: A survey,” Comput Sci Rev, vol. 34, Nov. 2019, doi: 10.1016/j.cosrev.2019.08.002. [Google Scholar]
- J. Leng et al., “Towards resilience in Industry 5.0: A decentralized autonomous manufacturing paradigm,” J Manuf Syst, vol. 71, pp. 95–114, Dec. 2023, doi: 10.1016/j.jmsy.2023.08.023. [CrossRef] [Google Scholar]
- T. T. Mezgebe, M. G. Gebreslassie, H. Sibhato, and S. T. Bahta, “Intelligent manufacturing eco-system: A post COVID-19 recovery and growth opportunity for manufacturing industry in Sub-Saharan countries,” Sci Afr, vol. 19, Mar. 2023, doi: 10.1016/j.sciaf.2023.e01547. [Google Scholar]
- B. Wang et al., “Human Digital Twin in the context of Industry 5.0,” Robot Comput Integr Manuf, vol. 85, Feb. 2024, doi: 10.1016/j.rcim.2023.102626. [Google Scholar]
- T. Jacob Fernandes França, H. São Mamede, J. M. Pereira Barroso, and V. M. Pereira Duarte dos Santos, “Artificial intelligence applied to potential assessment and talent identification in an organisational context,” Heliyon, vol. 9, no. 4, Apr. 2023, doi: 10.1016/j.heliyon.2023.e14694. [Google Scholar]
- S. A. Mirghaderi, A. Sheikh Aboumasoudi, and A. Amindoust, “Developing an open innovation model in the startup ecosystem industries based on the attitude of organizational resilience and blue ocean strategy,” Comput Ind Eng, vol. 181, Jul. 2023, doi: 10.1016/j.cie.2023.109301. [CrossRef] [Google Scholar]
- T. Ahmad et al., “Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities,” J Clean Prod, vol. 289, Mar. 2021, doi: 10.1016/j.jclepro.2021.125834. [CrossRef] [Google Scholar]
- S. Liang, J. Yang, and T. Ding, “Performance evaluation of AI driven low carbon manufacturing industry in China: An interactive network DEA approach,” Comput Ind Eng, vol. 170, Aug. 2022, doi: 10.1016/j.cie.2022.108248. [PubMed] [Google Scholar]
- R. Dwivedi, S. Nerur, and V. Balijepally, “Exploring artificial intelligence and big data scholarship in information systems: A citation, bibliographic coupling, and co-word analysis,” International Journal of Information Management Data Insights, vol. 3, no. 2, Nov. 2023, doi: 10.1016/j.jjimei.2023.100185. [CrossRef] [Google Scholar]
- Shruti, S. Rani, and G. Srivastava, “Secure hierarchical fog computing-based architecture for industry 5.0 using an attribute-based encryption scheme,” Expert Syst Appl, vol. 235, Jan. 2024, doi: 10.1016/j.eswa.2023.121180. [CrossRef] [Google Scholar]
- G. Konstantopoulos et al., “Materials characterisation and software tools as key enablers in Industry 5.0 and wider acceptance of new methods and products,” Mater Today Commun, vol. 36, Aug. 2023, doi: 10.1016/j.mtcomm.2023.106607. [Google Scholar]
- F. Hein-Pensel et al., “Maturity assessment for Industry 5.0: A review of existing maturity models,” J Manuf Syst, vol. 66, pp. 200–210, Feb. 2023, doi: 10.1016/j.jmsy.2022.12.009. [CrossRef] [Google Scholar]
- S. Fosso Wamba, M. M. Queiroz, and L. Hamzi, “A bibliometric and multi-disciplinary quasi-systematic analysis of social robots: Past, future, and insights of human-robot interaction,” Technol Forecast Soc Change, vol. 197, Dec. 2023, doi: 10.1016/j.techfore.2023.122912. [CrossRef] [Google Scholar]
- A. Di Vaio, R. Palladino, R. Hassan, and O. Escobar, “Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review,” J Bus Res, vol. 121, pp. 283–314, Dec. 2020, doi: 10.1016/j.jbusres.2020.08.019. [CrossRef] [Google Scholar]
- B. Gladysz, T. anh Tran, D. Romero, T. van Erp, J. Abonyi, and T. Ruppert, “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0,” J Manuf Syst, vol. 70, pp. 160–185, Oct. 2023, doi: 10.1016/j.jmsy.2023.07.008. [CrossRef] [Google Scholar]
- Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
- M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
- V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, 2023. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Eco-friendly approach to construction: Incorporating waste plastic in geopolymer concrete,” Mater Today Proc, 2023. [Google Scholar]
- M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
- A. Jaswal et al., “Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film,” Lecture Notes in Mechanical Engineering, pp. 119–127, 2023, doi: 10.1007/978-981-19-4147-4_12. [Google Scholar]
- T. K. Miroshnikova, I. A. Kirichenko, and S. Dixit, “Analytical aspects of anti-crisis measures of public administration,” Upravlenie / Management (Russia), vol. 10, no. 4, pp. 5–13, Jan. 2023, doi: 10.26425/2309-3633-2022-10-4-5-13. [CrossRef] [Google Scholar]
- S. Dixit et al., “Numerical simulation of sand–water slurry flow through pipe bend using CFD,” International Journal on Interactive Design and Manufacturing, Oct. 2022, doi: 10.1007/S12008-022-01004-X. [Google Scholar]
- R. Gera et al., “A systematic literature review of supply chain management practices and performance,” Mater Today Proc, vol. 69, pp. 624–632, Jan. 2022, doi: 10.1016/J.MATPR.2022.10.203. [CrossRef] [Google Scholar]
- V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector (International Journal on Interactive Design and Manufacturing (IJIDeM), (2023), 10.1007/s12008-023-01456- 9),” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01518-Y. [Google Scholar]
- H. Bindu Katikala, T. Pavan Kumar, B. Manideep Reddy, B. V.V.Pavan Kumar, G. Ramana Murthy, and S. Dixit, “Design of half adder using integrated leakage power reduction techniques,” Mater Today Proc, vol. 69, pp. 576–581, Jan. 2022, doi: 10.1016/J.matpr.2022.09.425. [CrossRef] [Google Scholar]
- L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [PubMed] [Google Scholar]
- J. Singh et al., “Computational parametric investigation of solar air heater with dimple roughness in S-shaped pattern,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01392-8. [Google Scholar]
- H. D. Nguyen et al., “A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties,” Journal of Materials Research and Technology, vol. 18, pp. 4641–4661, May 2022, doi: 10.1016/J.Jmrt.2022.04.055. [CrossRef] [Google Scholar]
- P. Singh, T. Bishnoi, S. Dixit, K. Kumar, N. Ivanovich Vatin, and J. Singh, “Review on the Mechanical Properties and Performance of Permeable Concrete,” Lecture Notes in Mechanical Engineering, pp. 341–351, 2023, doi: 10.1007/978-981-19-4147-4_35. [Google Scholar]
- .Hao, S.Z., Zhou, D.I., Hussain, F., Liu, W.F., Su, J.Z., Wang, D.W., Wang, Q.P., Qi, Z.M., Singh, C. and Trukhanov, S., 2020. Structure, spectral analysis and microwave dielectric properties of novel x (NaBi) 0.5 MoO4-(1-x) Bi2/3MoO4 (x= 0.2∼ 0.8) ceramics with low sintering temperatures. Journal of the European Ceramic Society, 40(10), pp.3569-3576. [CrossRef] [Google Scholar]
- Dar, S.A., Sharma, R., Srivastava, V. and Sakalle, U.K., 2019. Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba 2 InTaO 6. RSC advances, 9(17), pp.9522-9532. [CrossRef] [PubMed] [Google Scholar]
- Singh, J.I.P., Dhawan, V., Singh, S. and Jangid, K., 2017. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials today: proceedings, 4(2), pp.2793-2799. [CrossRef] [Google Scholar]
- Kaur, T., Kumar, S., Bhat, B.H., Want, B. and Srivastava, A.K., 2015. Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Applied Physics A, 119, pp.1531-1540. [CrossRef] [Google Scholar]
- Patel, S., 2012. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Reviews in Environmental Science and Bio/Technology, 11, pp.365-380. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.